Skip to main content
Log in

Discoveries and functions of virus-encoded MicroRNAs

  • Review
  • Molecular Biology
  • Published:
Chinese Science Bulletin

Abstract

Virus-encoded microRNAs (miRNAs) are a new kind of miRNAs that regulate the expression of target gene in host cells or viruses through inducing cleavage of mRNA, repressing translation, etc., and change the processes of host cells or replicate viruses to escape or resist immune surveillance of host and protect viruses themselves. It has become a hot topic to discover viral genes encoding miRNAs and their target genes, and to identify their functions. This review provides background information on the history of virally encoded miRNAs including their genomic distribution, functions and mechanisms. In addition, we discuss the similarities and differences between virus- and host-encoded miRNAs, the future directions of researches in viral miRNAs and their applications in diseases control and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee R C, Feinbaum R L, Ambros V. The Caenorhabditis elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75: 843–854

    Article  PubMed  CAS  Google Scholar 

  2. Reinhart B J, Slack F J, Basson M, et al. The 21 nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403: 901–906

    Article  PubMed  CAS  Google Scholar 

  3. Yin J Q, Wang Y. siRNA-mediated gene regulation system: Now and the future. Int J Mol Med, 2002, 10: 355–365

    PubMed  CAS  Google Scholar 

  4. Tan F L, Yin J Q. Application of RNAi to cancer research and therapy. Front Biosci, 2005, 10: 1946–1960

    Article  PubMed  CAS  Google Scholar 

  5. Ambros V. The functions of animal microRNAs. Nature, 2004, 431: 350–355

    Article  PubMed  CAS  Google Scholar 

  6. Alvarez-Garcia I, Miska E A. MicroRNA functions in animal development and human disease. Development, 2005, 132: 4653–4662

    Article  PubMed  CAS  Google Scholar 

  7. Hammond S M. MicroRNAs as oncogenes. Curr Opin in Genet Dev, 2006, 16: 4–9

    Article  CAS  Google Scholar 

  8. Bhattacharyya S N, Habermacher R, Martine U, et al. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell, 2006, 125: 1111–1124

    Article  PubMed  CAS  Google Scholar 

  9. Aravin A A, Lagos-Quintana M, Yalcin, et al. The small RNA profile during Drosophila melanogaster development. Dev Cell, 2003, 5: 337–350

    Article  PubMed  CAS  Google Scholar 

  10. Hipfner D R, Weigmann K, Cohen S M. The bantam gene regulates Drosophila growth. Genetics, 2002, 161: 1527–1537

    PubMed  CAS  Google Scholar 

  11. Brennecke J, Hipfner D R, Stark A, et al. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosphila. Cell, 2003, 113: 25–36

    Article  PubMed  CAS  Google Scholar 

  12. Bartel D P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116: 281–297

    Article  PubMed  CAS  Google Scholar 

  13. Suh M R, Lee Y, Kim J Y, et al. Human embryonic stem cells express a unique set of microRNAs. Dev Biol, 2004, 270: 488–498

    Article  PubMed  CAS  Google Scholar 

  14. Cheng A M, Byrom M W, Shelton J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res, 2005, 33: 1290–1297

    Article  PubMed  CAS  Google Scholar 

  15. Croce C M, Calin G A. miRNAs, cancer, and stem cell division. Cell, 2005, 122: 6–7

    Article  PubMed  CAS  Google Scholar 

  16. Sullivan C S, Ganem D. microRNAs and viral infection. Mol Cell, 2005, 20: 3–7

    Article  PubMed  CAS  Google Scholar 

  17. Berezikov E, Plasterk R H A. Camels and zebrafish, viruses and cancer: A microRNA update. Human Mol Genetics, 2005, 14(Review Issue 2): R183–R190

    Article  CAS  Google Scholar 

  18. Pfeffer S, Zavolan M, Grässer F A, et al. Identification of virus-encoded microRNAs. Science, 2004, 304: 734–736

    Article  PubMed  CAS  Google Scholar 

  19. Neilson J R, Sharp P A. Herpesviruses throw a curve ball: New insights into microRNA biogenesis and evolution. Nat Methods, 2005, 2: 252–254

    Article  PubMed  CAS  Google Scholar 

  20. Ghosh Z, Chakrabarti J, Mallick B. miRNomics—The bioinformatics of microRNA genes. Biochem Bipophys Res Commun, 2007, 363: 6–11

    Article  CAS  Google Scholar 

  21. Griffiths-Jones S. The microRNA registry. Nucl Acids Res, 2004, 32: D109–D111

    Article  PubMed  CAS  Google Scholar 

  22. Griffiths-Jones S, Grocock R J, Dongen van S, et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acid Res, 2006, 34: D140–D144

    Article  PubMed  CAS  Google Scholar 

  23. Cai X Z, Lu S H, Zhang Z H, et al. Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci, USA, 2005, 102: 5570–5575

    Article  PubMed  CAS  Google Scholar 

  24. Pfeffer S, Sewer A, Lagos-Quintana M, et al. Identification of microRNAs of the herpesvirus family. Nat Methods, 2005, 2: 269–276

    Article  PubMed  CAS  Google Scholar 

  25. Dunn W, Trang P, Zhong Q, et al. Human cytomegalovirus express novel microRNAs during productive viral infection. Cell Microbiol, 2005, 7: 1684–1695

    Article  PubMed  CAS  Google Scholar 

  26. Grey F, Antoniewicz A, Allen E. Identification and characterization of human cytomegalovirus-encoded microRNAs. J Virol, 2005, 79: 12095–12099

    Article  PubMed  CAS  Google Scholar 

  27. Cai X Z, Schäfer A, Lu S H, et al. Epstein-Barr virus microRNAs are evolutionarily conserved and differenfially expressed. PLoS Pathog, 2006, 2: 236–247

    CAS  Google Scholar 

  28. Grundhoff A, Sullivan C S, Ganem D. A combined computational and microarry-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA, 2006, 12: 733–750

    Article  PubMed  CAS  Google Scholar 

  29. Samols M A, Hu J H, Skalsky R L, et al. Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi’s sarcoma-associated herpesvirus. J Virol, 2005, 79: 9301–9305

    Article  PubMed  CAS  Google Scholar 

  30. Burnside J, Bernberg E, Anderson A. Marek’s disease virus encodes microRNAs that map to meq and the latency-associated transcript. J Virol, 2006, 80: 8778–8786

    Article  PubMed  CAS  Google Scholar 

  31. Yao Y, Zhao Y, Xu H, et al. Marek’s disease virus type 2 (MDV-2)-encoded microRNAs show no sequence conservation with those encoded by MDV-1. J Virol. 2007, 81: 7164–7170

    Article  PubMed  CAS  Google Scholar 

  32. Cui C, Griffiths A, Li G L, et al. Prediction and identification of herpes simplex virus 1-encoded microRNAs. J Virol, 2006, 80: 5499–5508

    Article  PubMed  CAS  Google Scholar 

  33. Schäfer A, Cai X, Bilello J P, et al. Cloning and analysis of microRNAs encoded by the primate γ-herpesvirus rhesus monkey rhadinovirus. Virol, 2007, 364: 21–27

    Article  Google Scholar 

  34. Gupta A, Gartner J J, Sethupathy P, et al. Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature, 2006, 442: 82–85

    PubMed  CAS  Google Scholar 

  35. Ackermann M. Pathogenesis of gammaherpesvirus infections. Vet Microbiol, 2006, 113: 211–222

    Article  PubMed  CAS  Google Scholar 

  36. Noguchi T, Mihara F, Yoshiura T, et al. MR imaging of human Herpesvirus-6 encephalopathy after hematopoietic stem cell transplantation in adults. Am J Neuroradiol, 2006, 27: 2191–2195

    PubMed  CAS  Google Scholar 

  37. Dourmishev L A, Dourmishev A L, Palmeri D, et al. Molecular genetics of Kaposi’s sarcoma-associated herpesvirus (human herpersvirus-8) epidemiology and pathogenesis. Microbiol Mol Rev, 2003, 67: 175–212

    Article  CAS  Google Scholar 

  38. Sullivan C S, Grundhoff A T, Tevethia S, et al. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature, 2005, 435: 682–686

    Article  PubMed  CAS  Google Scholar 

  39. Nair V, Zavolan M. Virus-encoded microRNAs: Novel regulators of gene expression. Trends Microbiol, 2006, 14: 169–175

    Article  PubMed  CAS  Google Scholar 

  40. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 2003, 31: 3406–3415

    Article  PubMed  CAS  Google Scholar 

  41. Omoto S, Fujii Y R. Regulation of human immunodeficiency virus 1 transcription by nef microRNA. J General Virol, 2005, 86: 751–755

    Article  CAS  Google Scholar 

  42. Brahmachari S K. Host-virus interaction: A new role for microRNAs. Retrovirol, 2006, 3: 68

    Article  Google Scholar 

  43. Provost P, Barat C, Plante I, et al. HIV-1 and microRNA-guided silencing pathway: An intricate and multifaceted encounter. Virus Res, 2006, 121: 107–115

    Article  PubMed  CAS  Google Scholar 

  44. Weinberg M S, Morris K V. Are viral-encoded microRNAs mediating latent HIV-1 infection? DNA Cell Biol, 2006, 25: 223–231

    Article  PubMed  CAS  Google Scholar 

  45. Kaul D, Khanna A, Suman. Evidence and nature of a novel miRNA encoded by HIV-1. Proc Indian Natn Sci Acad, 2006, 72: 91–95

    CAS  Google Scholar 

  46. Lu S H and B R Cullen. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and microRNA biogenesis. J Virol, 2004, 78: 12868–12876

    Article  PubMed  CAS  Google Scholar 

  47. Sano M, Kato Y, Taira K. Sequence-specific interference by small RNAs derived from adenovirus VA I RNA. FEBS Lett, 2006, 580: 1553–1564

    Article  PubMed  CAS  Google Scholar 

  48. Chen F, James Y Q. Gene expression regulators-MicroRNAs. Chin Sci Bull, 2005, 50: 1281–1292

    Article  CAS  Google Scholar 

  49. Enright A J, John B, Gaul U, et al. MicroRNA targets in Drosophila. Genome Biol, 2003, 5: R1

    Article  PubMed  Google Scholar 

  50. John B, Enright A J, Aravin A, et al. Erratum: Human microRNA targets (PLoS Biology 2: 11). PLoS Biol, 2005, 3: 1328

    Article  CAS  Google Scholar 

  51. John B, Enright A J, Aravin A, et al. Human microRNA targets. PLoS Biol, 2004, 2: 1862–1879

    Article  CAS  Google Scholar 

  52. Furnari F B, Adams M D, Pagano J S. Unconventional processing of the 3′ termini of the Epstein-Barr virus DNA polymerase mRNA. Proc Natl Acad Sci USA, 1993, 90: 378–382

    Article  PubMed  CAS  Google Scholar 

  53. Aravin A, Tuschl T. Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett, 2005, 579: 5830–5840

    Article  PubMed  CAS  Google Scholar 

  54. Li H W, Ding S W. Antiviral silencing in animals. FEBS Lett, 2005, 579: 5965–5973

    Article  PubMed  CAS  Google Scholar 

  55. Nakayashiki H. RNA silencing in fungi: mechanisms and applications. FEBS Lett, 2005, 579: 5950–5957

    Article  PubMed  CAS  Google Scholar 

  56. Grishok A. RNAi mechanisms in C. elegans. FEBS Lett, 2005, 579: 5932–5939

    Article  PubMed  CAS  Google Scholar 

  57. Kavi H H, Fernandez H, Xie W, et al. RNA silencing in Drosophila. FEBS Lett, 2005, 579: 5940–5949

    Article  PubMed  CAS  Google Scholar 

  58. Alwine J C, Khoury G. Simian virus 40-associated small RNA: Mapping on the simian virus 40 genome and characterization of its synthesis. J Virol, 1980, 36: 701–708

    PubMed  CAS  Google Scholar 

  59. Jasenchakova Z, Meister A, Walter J, et al. Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. Plant Cell, 2000, 12: 2087–2100

    Article  Google Scholar 

  60. Hermansen R, Sierra M A, Johnson J, et al. Identification of simian virus 40 promoter DNA sequences capable of conferring restriction endonuclease hypersensitivity. J Virol, 1996, 70: 3416–3422

    PubMed  CAS  Google Scholar 

  61. Balakrishnan L, Milavetz B. Programmed remodeling of hyperacetylated histone H4 and H3 organization on the SV40 genome during lytic infection. Virol, 2005, 334: 111–123

    Article  CAS  Google Scholar 

  62. Cantalupo P, Doering A, Sullivan C S, et al. Complete nucleotide sequence of polyomavirus SA12. J Virol, 2005, 79: 13094–13104

    Article  PubMed  CAS  Google Scholar 

  63. Mylin L M, Schell T D, Roberts D, et al. Quantitation of CD8+ T-lymphocyte responses to multiple epitopes from simian virus 40 (SV40) large T antigen in C57BL/6 mice immunized with SV40, SV40 T-antigen-transformed cells, or vaccinia virus recombinants expressing full-length T antigen or epitope minigenes. J Virol, 2000, 74: 6922–6934

    Article  PubMed  CAS  Google Scholar 

  64. Bennasser Y, Le SY, Benkirane M, et al. Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity, 2005, 22: 607–619

    Article  PubMed  CAS  Google Scholar 

  65. Omoto S, Ito M, Tsutsumi Y, et al. HIV-1 nef suppression by virally encoded microRNA Retrovirol, 2004, 1: 44

    Article  Google Scholar 

  66. Couturier J P, Root-Bernstein R S. HIV may produce inhibitory microRNAs (miRNAs) that block production of CD28, CD4 and some interleukins. J Theoretical Biol, 2005, 235: 169–184

    Article  CAS  Google Scholar 

  67. Bennasseer Y, Le S Y, Yeung M L, et al. HIV-1 encoded candidate micro-RNAs and their cellular targets. Retrovirol, 2004, 1: 43

    Article  Google Scholar 

  68. Lecellier C H, Dunoyer P, Arar K, et al. A cellular microRNA mediates antiviral defense in human cells. Science, 2005, 308: 557–560

    Article  PubMed  CAS  Google Scholar 

  69. Jopling C L, Yi M K, Lancaster A M, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science, 2005, 309: 1577–1581

    Article  PubMed  CAS  Google Scholar 

  70. Liang R Q, Li W, Li Y, et al. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res, 2005, 33: e17

    Article  PubMed  Google Scholar 

  71. Zilberstein C B-Z, Ziv-Ukelson M, Pinter R Y, et al. A high-throughput approach for associating microRNAs with their activity conditions. Lect Notes Bioinformatics (Subseries of Lecture Notes in Computer Science), 2005, 3500: 133–151

    CAS  Google Scholar 

  72. Lim L P, Lau N C, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 2005, 433: 769–773

    Article  PubMed  CAS  Google Scholar 

  73. Chen P Y, Manninga H, Slanchev K, et al. The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev, 2005, 19: 1288–1293

    Article  PubMed  CAS  Google Scholar 

  74. Barad O, Meiri E, Avniel A, et al. MicroRNAs expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res, 2004, 14: 2486–2494

    Article  PubMed  CAS  Google Scholar 

  75. Lu J, Getz G, Miska A E, et al. MicroRNA expression profiles classify human cancer. Nature, 2005, 435: 834–838

    Article  PubMed  CAS  Google Scholar 

  76. Shinggara J, Keiger K, Shelton J, et al. An optimized isolation and labeling platform for accurate microRNA expression profiling. RNA, 2005, 11: 1461–1470

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lun ZhaoRong.

Additional information

Supported in part by the Ministry of Education of China (Grant No. IRT0447)

About this article

Cite this article

Jia, W., Li, Z. & Lun, Z. Discoveries and functions of virus-encoded MicroRNAs. Chin. Sci. Bull. 53, 169–177 (2008). https://doi.org/10.1007/s11434-008-0106-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0106-y

Keywords

Navigation