Skip to main content
Log in

Investigations into the perplexing interrelationship of the Genus Takifugu Abe, 1949 (Tetraodontiformes, Tetraodontidae)

  • Articles
  • Genetics
  • Published:
Chinese Science Bulletin

Abstract

The phylogenetic relationships within the genus Takifugu Abe, 1949 (Tetraodontiformes, Tetraodontidae) remain unresolved. Because of the use of Takifugu as model organisms, the resolution of these relationships is crucial for the interpretation of evolutionary trends in biology. Pufferfishes of this genus are comprised of a comparatively small number of species and are mainly distributed along the coastal region of the western part of the Sea of Japan and the coastline of China. Mitochondrial gene sequences were employed to test the phylogenetic hypotheses within the genus. Seventeen species of the genus were examined. Molecular phylogenetic trees were constructed using the maximum parsimony, neighbor-joining, maximum likelihood and Bayesian methods. Our hypothesis of internal relationships within the genus differs from previous hypotheses. Our results indicate that (1) the genus Takifugu is a monophyletic assemblage; (2) the genus is divided into 6 subgroups based on the molecular data; and (3) there is low genetic diversity among the species within this genus. In addition, speciation within Takifugu appears to be driven by hybridization and isolation by distribution. Our results also suggested that the taxonomy in the genus should be clarified based on both molecular and morphological data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Su J, Li C. Fauna Sinica, Class Teleostei, Tetraodontiformes. Beijing: Science Press, 2002

    Google Scholar 

  2. Santini F, Tyler J C. A phylogeny of the families of fossil and extant tetraodontiform fishes (Acanthomorpha, Tetraodontiformes), upper cretaceous to recent. Zool J Linnean Soc, 2003, 139(4): 565–617

    Article  Google Scholar 

  3. Masuda H, Amaoka K, Araga C, et al. The Fishes of the Japanese Archipelago, vol. Text and Plates. Tokyo: Tokai Univ Press, 1984

    Google Scholar 

  4. Song L, Liu B, Xiang J, et al. Molecular phylogeny and species identification of pufferfish of the genus Takifugu (Tetraodontiformes, Tetraodontidae). Mar Biotechnol (NY), 2001, 3(4): 398–406

    Article  CAS  Google Scholar 

  5. Cheng Q, Wang C, Tian M, et al. Studies on the Chinese Tetraodonoid fishes of the genus Fugu. Acta Zool Sin (in Chinese), 1975, 21(4): 359–378

    Google Scholar 

  6. Miyaki K, Tebeta O, Kayano H. Karyotypes in six species of pufferfishes genus Takifugu (Tetraodontidae, Tetraodontiformes). Fish Sci, 1995, 61: 594–598

    CAS  Google Scholar 

  7. Wang K, Zhang P, Yin Q. Studies on the interspecific differences of myogen and cluster of the genus Fugu. Ocean Limnol Sin (in Chinese), 1984, 15(5): 493–500

    CAS  Google Scholar 

  8. Fraser-Brunner A. Notes on the plectognath fishes. VIII. The classification of the suborder Tetraodontoidea, with a synopsis of the genera. Ann Mag Nat Hist, 1943, 10(61): 1–18

    Google Scholar 

  9. Abe T. Taxonomic studies on the puffers (Tetraodontidae, Teleostei) from Japan and adjacent regions, V: Synopsis of the puffers from and adjacent regions. Bull Biogeogr Soc Japan, 1949, 14(1, 13): 1–15, 89–140, 141–142

    Google Scholar 

  10. Abe T. Taxonomic studies on the puffers (Tetraodontidae, Teleostei) from Japan andadjacent regions, VII: Concluding remarks, with the introduction of two new genera, Fugu and Boesemanichthys. Jpn J Ichthyol, 1952, 2(1, 2, 3): 35–44; figs. 31–33, 93–97, 117–127

    Google Scholar 

  11. Whitley G P. Studies in ichthyology, vol 16. Records of the Australian Museum, 1953

  12. Chen C, Shi T, Sun S G, et al. Identification a phylogenetic relationships among four species of puffer fish in Fugu as determined by RAPD markers. Marine Fish Res (in Chinese), 2001, 22(3): 32–36

    Google Scholar 

  13. Song L, Li H, Cui Z, et al. Population genetic structure and genetic differentiation of the pufferfish Takifugu rubripes and Takifugu pseudommus revealed by RAPD Analysis. High Technol Lett, 2003, 9(1): 22–25

    CAS  Google Scholar 

  14. Song L S, Liu B, Wang Z, et al. Phylogenetic relationships among pufferfish of genus Takifugu by RAPD analysis. Chin J Oceanol Limnol, 2001, 19(2): 128–134

    Article  CAS  Google Scholar 

  15. Aparicio S, Chapman J, Stupka E, et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science, 2002, 297(5585): 1301–1310

    Article  PubMed  CAS  Google Scholar 

  16. Elmerot C, Arnason U, Gojobori T, et al. The mitochondrial genome of the pufferfish, Fugu rubripes, and ordinal teleostean relationships. Gene, 2002, 295(2): 163–172

    Article  PubMed  CAS  Google Scholar 

  17. Brenner S, Elgar G, Sandford R, et al. Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature, 1993, 366(6452): 265–268

    Article  PubMed  CAS  Google Scholar 

  18. Chen W J, Orti G, Meyer A. Novel evolutionary relationship among four fish model systems. Trends Genet, 2004, 20(9): 424–431

    Article  PubMed  CAS  Google Scholar 

  19. Holcroft N I. A molecular test of alternative hypotheses of tetraodontiform (Acanthomorpha: Tetraodontiformes) sister group relationships using data from the RAG1 gene. Mol Phylogenet Evol, 2004, 32(3): 749–760

    Article  PubMed  CAS  Google Scholar 

  20. Holcroft N I. A molecular analysis of the interrelationships of tetraodontiform fishes (Acanthomorpha: Tetraodontiformes). Mol Phylogenet Evol, 2005, 34(3): 525–544

    Article  PubMed  CAS  Google Scholar 

  21. Esposti M D, De Vries S, Crimi M, et al. Mitochondrial cytochrome b: Evolution and structure of the protein. Biochim Biophys Acta, 1993, 1143(3): 243–271

    Article  PubMed  CAS  Google Scholar 

  22. Miya M, Nishida M. Use of mitogenomic information in teleostean molecular phylogenetics: A tree-based exploration under the maximum-parsimony optimality criterion. Mol Phylogenet Evol, 2000, 17(3): 437–455

    Article  PubMed  CAS  Google Scholar 

  23. Zardoya R, Meyer A. Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates. Mol Biol Evol, 1996, 13(7): 933–942

    PubMed  CAS  Google Scholar 

  24. Peng Z, He S, Zhang Y. Phylogenetic relationships of glyptosternoid fishes (Siluriformes: Sisoridae) inferred from mitochondrial cytochrome b gene sequences. Mol Phylogenet Evol, 2004, 31(3): 979–987

    Article  PubMed  CAS  Google Scholar 

  25. Cui J, Shen X, Yang G, et al. Genetic diversities of T. rubripes and T. pseudommus determined by microsatellites DNA variations. High Technol Commun, 2005, 15(12): 90–96

    CAS  Google Scholar 

  26. Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual-2nd. New York: Cold Spring Harbor Laboratory Press, 1989

    Google Scholar 

  27. Xiao W, Zhang Y, Liu H. Molecular systematics of Xenocyprinae (teleostei: cyprinidae): Taxonomy, biogeography, and coevolution of a special group restricted in East Asia. Mol Phylogenet Evol, 2001, 18(2): 163–173

    Article  PubMed  CAS  Google Scholar 

  28. Liu H Z. Phylogenetic relationships of the cypriniformes tested by mtDNA 12S rRNA sequence variations. Acta Genet Sin, 2004, 31(2): 137–142

    PubMed  CAS  Google Scholar 

  29. Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25(24): 4876–4882

    Article  PubMed  CAS  Google Scholar 

  30. Galtier N, Gouy M, Gautier C. SEAVIEW and PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci, 1996, 12(6): 543–548

    PubMed  CAS  Google Scholar 

  31. Wiens J J. Combining data sets with different phylogenetic histories. Syst Biol, 1998, 47(4): 568–581

    Article  PubMed  CAS  Google Scholar 

  32. Farris J S, Kallersjo M, Kluge A G, et al. Testing significance of incongruence. Cladistics, 1995, 10(3): 315–319

    Article  Google Scholar 

  33. Swofford D L. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods), 4th ed. Sunderland, Massachusetts: Sinauer Associates, 2002

    Google Scholar 

  34. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol, 1993, 10(3): 512–526

    PubMed  CAS  Google Scholar 

  35. Xia X, Xie Z. DAMBE. Software package for data analysis in molecular biology and evolution. J Hered, 2001, 92(4): 371–373

    Article  PubMed  CAS  Google Scholar 

  36. Guo X, He S, Zhang Y. Phylogeny and biogeography of Chinese sisorid catfishes re-examined using mitochondrial cytochrome b and 16S rRNA gene sequences. Mol Phylogenet Evol, 2005, 35(2): 344–362

    Article  PubMed  CAS  Google Scholar 

  37. Irwin D M, Kocher T D, Wilson A C. Evolution of the cytochrome b gene of mammals. J Mol Evol, 1991, 32(2): 128–144

    Article  PubMed  CAS  Google Scholar 

  38. Farris J S. Methods for computing Wagner trees. Syst Zool, 1970, 19(1): 83–92

    Article  Google Scholar 

  39. Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol, 1981, 17(6): 368–376

    Article  PubMed  CAS  Google Scholar 

  40. Mau B. Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Madison: University of Wisconsin-Madison, 1996

    Google Scholar 

  41. Huelsenbeck J P, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 2001, 17(8): 754–755

    Article  PubMed  CAS  Google Scholar 

  42. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 1985, 39(4): 783–791

    Article  Google Scholar 

  43. Posada D, Crandall K A. MODELTEST: Testing the model of DNA substitution. Bioinformatics, 1998, 14(9): 817–818

    Article  PubMed  CAS  Google Scholar 

  44. Lanave C, Preparata G, Saccone C, et al. A new method for calculating evolutionary substitution rates. J Mol Evol, 1984, 20(1): 86–93

    Article  PubMed  CAS  Google Scholar 

  45. Kumar S, Tamura K, Nei M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform, 2004, 5(2): 150–163

    Article  PubMed  CAS  Google Scholar 

  46. Templeton A R. Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution, 1983, 37(2): 221–244

    Article  CAS  Google Scholar 

  47. Shimodaira H, Hasegawa M. Multiple comparisons of loglikelihoods with applications to phylogenetic inference. Mol Biol Evol, 1999, 16(8): 1114–1116

    CAS  Google Scholar 

  48. Cantatore P, Roberti M, Pesole G, et al. Evolutionary analysis of cytochrome b sequences in some Perciformes: Evidence for a slower rate of evolution than in mammals. J Mol Evol, 1994, 39(6): 589–597

    Article  PubMed  CAS  Google Scholar 

  49. Lydeard C, Roe K J. The Phylogenetic Utility of the Mitochondrial Cytochrome b Gene for Inferring Relationships Among Actinopterygian Fishes. San Diego: Academic Press, 1997

    Google Scholar 

  50. Buckley T R, Simon C, Shimodaira H, et al. Evaluating hypotheses on the origin and evolution of the New Zealand alpine cicadas (Maoricicada) using multiple-comparison tests of tree topology. Mol Biol Evol, 2001, 18(2): 223–234

    PubMed  CAS  Google Scholar 

  51. Masuda Y, Shinohara N, Takahashi Y, et al. Occurrence of natural hybrid between pufferfishes, Takifugu xanthopterus and T. vermicularis, in Ariake Bay, Kyushu, Japan. Nippon Suisan Gakkaishi, 1991, 57(7): 1247–1255

    Google Scholar 

  52. Johnson J B, Jordan S. Phylogenetic divergence in leatherside chub (Gila copei) inferred from mitochondrial cytochrome b sequences. Mol Ecol, 2000, 9(8): 1029–1035

    Article  PubMed  CAS  Google Scholar 

  53. Near T J, Porterfield J C, Page L M. Evolution of Cyt b and the molecular systematics of Ammocrypta (Percidae: Etheostomatinae). Copeia, 2000, 3: 701–711

    Article  Google Scholar 

  54. Kadereit J W. Molecules and morphology, phylogenetics and genetics. Bot Acta, 1994, 107: 369–373

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He ShunPing.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 30225008)

About this article

Cite this article

Zhang, Y., He, S. Investigations into the perplexing interrelationship of the Genus Takifugu Abe, 1949 (Tetraodontiformes, Tetraodontidae). Chin. Sci. Bull. 53, 233–244 (2008). https://doi.org/10.1007/s11434-008-0066-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0066-2

Keywords

Navigation