Skip to main content
Log in

An improved method of potential of mean force for protein-protein interactions

  • Articles
  • Biophysics
  • Published:
Chinese Science Bulletin

Abstract

In this work, the traditional method of potential of mean force (PMF) is improved for describing the protein-protein interactions. This method is developed at atomic level and is distance-dependent. Compared with the traditional method, our model can reasonably consider the effects of the environmental factors. With this modification, we can obtain more reasonable and accurate pair potentials, which are the pre-requisite for precisely describing the protein-protein interactions and can help us to recognize the interaction rules of residues in protein systems. Our method can also be applied to other fields of protein science, e.g., protein fold recognition, structure prediction and prediction of thermostability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sippl M J. Knowledge-based potentials for proteins. Curr Opin Struct Biol, 1995, 5: 229–235

    Article  PubMed  CAS  Google Scholar 

  2. Jernigan R L, Bahar I. Structure-derived potentials and protein simulations. Curr Opin Struct Biol, 1996, 6: 195–209

    Article  PubMed  CAS  Google Scholar 

  3. Jones D T, Thornton J M. Potential energy functions for threading. Curr Opin Struct Biol, 1996, 6: 210–216

    Article  PubMed  CAS  Google Scholar 

  4. Vajda S, Sippl M J, Novotny J. Empirical potentials and functions for protein folding and binding. Curr Opin Struct Biol, 1997, 7: 222–228

    Article  PubMed  CAS  Google Scholar 

  5. Moult J. Comparison of database potentials and molecular mechanics force fields. Curr Opin Struct Biol, 1997, 7: 194–199

    Article  PubMed  CAS  Google Scholar 

  6. Lazaridis T, Karplus M. Effective energy functions for protein structure prediction. Curr Opin Struct Biol, 2000, 10: 139–145

    Article  PubMed  CAS  Google Scholar 

  7. Gohlke H, Klebe G. Statistical potentials and scoring functions applied to protein-ligand binding. Curr Opin Struct Biol, 2001, 11: 231–235

    Article  PubMed  CAS  Google Scholar 

  8. Buchete N, Straub J E, Thirumalai D. Development of novel statistical potentials for protein fold recognition. Curr Opin Struct Biol, 2004, 14: 225–232

    Article  PubMed  CAS  Google Scholar 

  9. Li C H, Ma X H, Chen W Z, et al. Progress in protein-protein docking approaches. Prog Biochem Biophys, 2006, 33(7): 616–621

    Article  CAS  Google Scholar 

  10. Berman H M, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res, 2000, 28: 235–242

    Article  PubMed  CAS  Google Scholar 

  11. Chandler D. Introduction to Modern Statistical Mechanics. New York: Oxford University Press, 1987

    Google Scholar 

  12. McQuarrie D. Statistical Mechanics. New York: Harper Collins, 1976

    Google Scholar 

  13. Sippl M J. Calculation of conformational ensembles from potentials of mean force. an approach to the knowledge-based prediction of local structures in globular proteins. J Mol Biol, 1990, 213: 859–883

    Article  PubMed  CAS  Google Scholar 

  14. Bahar I, Jernigan R L. Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation. J Mol Biol, 1997, 266: 195–214

    Article  PubMed  CAS  Google Scholar 

  15. Buchete N, Straub J E, Thirumalai D. Orientational potentials extracted from protein structures improve native fold recognition. Protein Sci, 2004, 13: 862–874

    Article  PubMed  CAS  Google Scholar 

  16. Hoppe C, Schomburg D. Prediction of protein thermostability with a direction-and distance-dependent knowledge-based potential. Protein Sci, 2005, 14: 2682–2692

    Article  PubMed  CAS  Google Scholar 

  17. Melo F, Feytmans E. Novel knowledge-based mean force potential at atomic level. J Mol Biol, 1997, 267: 207–222

    Article  PubMed  CAS  Google Scholar 

  18. Samudrala R, Moult J. An all-atom distance-dependent conditional probability discriminatory function for protein structure prediction. J Mol Biol, 1998, 275: 895–916

    Article  PubMed  CAS  Google Scholar 

  19. Robert C H, Janin J. A soft, mean-field potential derived from crystal contacts for predicting protein-protein interactions. J Mol Biol, 1998, 283: 1037–1047

    Article  PubMed  CAS  Google Scholar 

  20. Gohlke H, Hendlich M, Klebe G. Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol, 2000, 295: 337–356

    Article  PubMed  CAS  Google Scholar 

  21. Muegge I, Martin Y C. A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J Med Chem, 1999, 42: 791–804

    Article  PubMed  CAS  Google Scholar 

  22. Mitchell J B O, Laskowski R A, Alex A, et al. Bleep-potential of mean force describing protein-ligand interactions: I. generating potential. J Comput Chem, 1999, 20: 1165–1176

    Article  CAS  Google Scholar 

  23. Jiang L, Gao Y, Mao F, et al. Potential of mean force for protein-protein interaction studies. Proteins, 2002, 46: 190–196

    Article  PubMed  CAS  Google Scholar 

  24. Zhou H, Zhou Y. Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci, 2002, 11: 2714–2726

    Article  PubMed  CAS  Google Scholar 

  25. Godzik A, Kolinski A, Skolnick J. Are proteins ideal mixtures of amino acids? analysis of energy parameter sets. Protein Sci, 1995, 4: 2107–2117

    PubMed  CAS  Google Scholar 

  26. Mirny L A, Shakhnovich E I. How to derive protein folding potential? a new approach to an old problem. J Mol Biol, 1996, 264: 1164–1179

    Article  PubMed  CAS  Google Scholar 

  27. Thomas P D, Dill K A. Statistical potentials extracted from protein structures: how accurate are they? J Mol Biol, 1996, 257: 457–469

    Article  PubMed  CAS  Google Scholar 

  28. Ben-Naim A. Statistical potentials extracted from protein structures: are these meaningful potentials? J Chem Phys, 1997, 107: 3698–3706

    Article  CAS  Google Scholar 

  29. Skolnick J, Jaroszewski L, Kolinski A, et al. Derivation and testing of pair potentials for protein folding. when is the quasichemical approximation correct? Protein Sci, 1997, 6: 676–688

    Article  PubMed  CAS  Google Scholar 

  30. Keskin O, Bahar I, Badretdinov A Y, et al. Empirical solvent-mediated potentials hold for both intra-molecular and inter-molecular inter-residue interactions. Protein Sci, 1998, 7: 2578–2586

    Article  PubMed  CAS  Google Scholar 

  31. Singh J, Thornton J M. Atlas of Protein Side-Chain Interactions, Vols. I and II. Oxford: IRL Press, 1992

    Google Scholar 

  32. Sippl M J. Helmholtz free energy of peptide hydrogen bonds in proteins. J Mol Biol, 1996, 260: 644–648

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 90403120, 10474041 and 10504012)

About this article

Cite this article

Su, Y., Li, W., Zhang, J. et al. An improved method of potential of mean force for protein-protein interactions. Chin. Sci. Bull. 53, 1145–1151 (2008). https://doi.org/10.1007/s11434-008-0036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0036-8

Keywords

Navigation