Skip to main content
Log in

Solar release time of solar energetic particles and associated acceleration source in corona

  • Review
  • Astronomy
  • Published:
Chinese Science Bulletin

Abstract

Solar energetic particles (SEPs) are accelerated in corona at an early phase of solar energetic particle events (SEPE). The acceleration mechanism of SEPs in corona can only be inferred from an analysis of multi-band observational data, as the observation of SEPs is usually made around 1AU. In this context, people have investigated spectrums, charge state, solar release time (SRT), and multi-band data of SEPEs, in an attempt to judge the acceleration mechanism of SEPs. The SRT computation of SEPs is an important and commonly used approach to study the acceleration mechanism of SEPs in corona. This paper reviews some important findings concerning the SRT computation of SEPs, and analyzes different merits of each approach for such calculation, based on a range of SEPE case studies. This paper also analyzes and discusses both possible and actual acceleration mechanisms of a number of SEPEs, by calculating the SRT of the SEPEs. Finally, the paper summarizes the possible problems in studying an acceleration mechanism of SEPEs inferred from the SRT of SEP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brueckner G E, et al. The large angle spectroscopic coronagraph (LASCO). Solar Phys, 1995, 162: 357–402

    Article  Google Scholar 

  2. Maxwell A, Dryer M. Characteristics of shocks in the solar corona, as inferred from radio, optical, and theoretical investigations. Space Sci Rev, 1982, 32: 11–24

    Article  Google Scholar 

  3. Wang J L. Coronal Mass Ejection—A disturbed source of space weather. Prog Geophys, 1999, 14(Suppl): 8–18

    Google Scholar 

  4. Reames D V. Particle acceleration at the Sun and in the heliosphere. Space Sci Rev, 1999, 90: 413–491

    Article  CAS  Google Scholar 

  5. Reames D V, Tylka A J. Energetic particle abundance as prbes of an interplanetary shock wave. ApJ, 2002, 575: L37–L39

    Article  CAS  Google Scholar 

  6. Labrador A W, Leske R A, Mewaldt R A, et al. High energy ionic charge state composition in recent large solar energetic particle events. Proc 28th Cosmic Ray Conf, 2003, 6: 3269–3272

    Google Scholar 

  7. Cane H V, von Rosenvinge T T, Cohen C M S, et al. Two components in major solar particle events. Geophys Res Lett, 2003, 30(12): 8017–8020

    Article  Google Scholar 

  8. Tylka A J, Cohen C M S, Dietrich W F, et al. Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophys J, 2005, 625: 474–495

    Article  CAS  Google Scholar 

  9. Simnett G M. The electron energy spectrum from large solar flares. Solar Physics, 2006, 237: 383–395

    Article  CAS  Google Scholar 

  10. Miroshnichenko L I, De Koning C A, Perez-Enriquez R. Large solar event of September 29, 1989: Ten years after. Space Sci Rev, 2000, 91: 615–715

    Article  CAS  Google Scholar 

  11. Cliver E W. Prompt injection of relativistic protons from the September 1, 1971 solar flare. Solar Phys, 1982, 75: 341–345

    Article  CAS  Google Scholar 

  12. Cliver E W, Cahler S W, Shea M A, et al. Injection onsets of 2 GeV protons, 1 MeV electrons, and 100 keV electrons in solar cosmic ray flares. Astrophys J, 1982, 260: 362–370

    Article  CAS  Google Scholar 

  13. Kahler S W. Injection profiles of solar energetic particles as functions of coronal mass ejection heights. Astrophys J, 1994, 428: 837–

    Article  Google Scholar 

  14. Gopalswamy N, Xie H, Yashiro S, et al. Coronal mass ejections and ground level enhancements. 29th Int Cosmic Ray Conf, 2005, 00: 101–

    Google Scholar 

  15. Haggerty D K, Roelof E C. Impulsive near-relativistic solar electron events: Delayed injection with respect to solar electromagnetic emission. Astrophys J, 2002, 579: 841–853

    Article  Google Scholar 

  16. Lin R P, et al. Energetic solar electrons in the interplanetary medium. Sol Phys, 1985, 100: 537–561

    Article  CAS  Google Scholar 

  17. Reames D V, von Rosenvinge T T, Lin R P. Solar He-3-rich events and nonrelativistic electron events—A new association. Astrophys J, 1985, 292: 716–724

    Article  CAS  Google Scholar 

  18. Krucker S, Larson D E, Lin R P, et al. On the origin of impulsive electron events observed at 1 AU. Astrophys J, 1999, 519: 864–875

    Article  Google Scholar 

  19. Krucker S, Lin R P. Two classes of solar proton events derived from onset time analysis. Astrophys J, 2000, 542: L61–64

    Article  CAS  Google Scholar 

  20. Tylka A J, Cohen C M S, Dietrich W F, et al. Proc 28th Int Cosmic Ray Conf (Tsukuba), 2003, 6: 3305–3308

    Google Scholar 

  21. Mewaldt R A, Cohen C M S, Haggerty D K, et al. 28th Int Cosmic Ray Conf (Tsukuba), 2003, 6: 3313–3316

    Google Scholar 

  22. Tylka A J, Boberg P R, Cohen C M S, et al. Flare- and shock-accelerated energetic particles in the solar events of 2001 April 14 and 15. Astrophys J, 2002, 581: L119–L123

    Article  CAS  Google Scholar 

  23. Miroshnichenko L I, Klein K L, Lantos P, et al. Relativistic nucleon and electron production in the 2003 October 28 solar event. J Geophys Res, 2005, 110: A09S08

    Google Scholar 

  24. Lintunen J and Vainio R. Solar energetic particle event onset as analyzed simulated data. Astron Astrophys, 2004, 420: 343–350

    Article  Google Scholar 

  25. Sáiz A, Evenson P, Ruffolo D, et al. On the estimation of solar energetic particle injection timing from onset times near Earth. Astrophys J, 2005, 626: 1131

    Article  Google Scholar 

  26. Bieber J W. Proc Spaceship Earth—An optimized network of neutron monitors. 24th Int Cosmic Ray Conf (Rome), 1995, 4: 1316

    CAS  Google Scholar 

  27. Bieber J W, Dröge W, Evenson P, et al. Energetic particle observations during the 2000 July 14 solar event. Astrophys J, 2002, 567: 622

    Article  Google Scholar 

  28. Li C, Tang Y H, Dai Y, et al. The acceleration characteristics of solar energetic particles in 2000 July 14 event. Astron Astrophys, 2007, 461: 1115–1119

    Article  CAS  Google Scholar 

  29. Bieber J W, Evenson P, Ruffolo D, et al. Proc spaceship earth observations of the Easter GLE. 28th Int Cosmic Ray Conf (Tsukuba), 2003, 8: 113

    Google Scholar 

  30. Bieber J W, et al. Spaceship earth observations of the earth 2001 solar particle event. Astrophys J, 2004, 601: L103–L106

    Article  Google Scholar 

  31. Bieber J W, et al. Relativistic solar neutrons and protons on 28 October 2003. Geophys Res Lett, 2005, 32: L03S02

    Google Scholar 

  32. Le G M, Tang Y H, Han Y B. Solar energetic particle event of 20 January 2005: Release times and possible sources. Chin J Astron Astrophys (ChJAA), 2006, 6(6): 751–758

    Article  CAS  Google Scholar 

  33. Simnett G M. The timing of relativistic proton acceleration in the 20 January 2005 flare. Astron Astrophys, 2006, 445: 715–724

    Article  CAS  Google Scholar 

  34. Le G M, Han Y B, Zhang Y J. A comparative analysis on two solar proton events. Chin Sci Bull, 2007, 52(1): 47–52

    Article  CAS  Google Scholar 

  35. Li C, Tang Y H, Dai Y, et al. Vial flare magnetic reconnection and relativistic particles in the 2003 October 28 event. Astron Astrophys, 2007, 472: 283–286

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le GuiMing.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 50677020, 10333040 and 10373017) and the Science and Technology Diffusion Program of China Meteorological Administration (Grant No. CMATG2007M03)

About this article

Cite this article

Le, G., Tang, Y. & Han, Y. Solar release time of solar energetic particles and associated acceleration source in corona. Chin. Sci. Bull. 53, 161–168 (2008). https://doi.org/10.1007/s11434-008-0030-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0030-1

Keywords

Navigation