Skip to main content
Log in

Up-conversion luminescence of Er3+ doped and Er3+/Yb3+ co-doped YTaO4

  • Articles
  • Condensed Matter Physics
  • Published:
Chinese Science Bulletin

Abstract

The synthesis and up-conversion luminescent properties of YTaO4:Er3+ and YTaO4:Er3+/Yb3+ are reported for the first time. According to the measurement results of up-conversion spectra, Yb3+ co-doping can remarkably enhance the green (2H11/2/4S3/24I15/2) and red (4F9/24I15/2) emissions, but depress the infrared emission (4I9/24I15/2). With the increase of the Yb3+ concentration, the intensity of green emission increases, after that, when the Yb3+ concentration increases continuously, the intensity of green emission decreases, while those of the red and infrared emissions increase and decrease alternately. In addition, the up-conversion mechanisms of Er3+ doped and Er3+/Yb3+ co-doped YTaO4 are also discussed. It is found that the transform of up-conversion mechanism from two-step energy transfer to cooperating sensitization takes place when Yb3+ concentration is increased up to 12 mol%. With the further increase of Yb3+ concentration, the energy-back-transfer gradually becomes the dominant up-conversion mechanism, which results in the quenching of the green emission and slight increasing of the red and infrared emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo X. X, Cao W H. Blue, green, red upconversion luminescence and optical characteristic of rare earth doped rare earth oxide and oxysulfide. Sci China Ser B-Chem, 2007, 50(4): 505–513

    Article  CAS  Google Scholar 

  2. Matsuura D. Red, green, and blue upconversion luminescence of tribalent-rare-earth ion-doped Y2O3 nanocrystals. Appl Phys Lett, 2002, 81(24): 4526–4528

    Article  CAS  Google Scholar 

  3. Yeh D C, Sibley W A, Suscavage M, et al. Multiphonon relaxation and infrared-to-visible conversion of Er3+ and Yb3+ ions in barium-thorium fluoride glass. J Appl Phys, 1987, 62(1): 266–275

    Article  CAS  Google Scholar 

  4. Yang Z M, Feng Z M, Jiang Z H. Upconversion emission in multi-doped glasses for full colour display. J Phys D-Appl Phys, 2005, 38: 1629–1632

    Article  CAS  Google Scholar 

  5. Yi G S, Lu H C, Zhao S Y, et al. Synthesis, characterization, and biological application of size-controlled nanacrystalline NaYF4: Yb, Er infrared-to-visible upconversion phosphors. Nano Lett, 2004, 4(11): 2191–2196

    Article  CAS  Google Scholar 

  6. Heer S, kompe K, Gudel H-U, et al. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv Mater, 2004, 16: 23–24

    Article  CAS  Google Scholar 

  7. Yang Z M, Jiang Z H. Effect of alkali metal oxides on upconversion fluorescence properties of germanate-tellurite glasses. Chin Sci Bull, 2004, 49: 2572–2574

    Article  CAS  Google Scholar 

  8. Auzel F. Materials and devices using double-pumped phosphors with energy transfer. Proc IEEE, 1973, 61: 758–786

    Article  CAS  Google Scholar 

  9. Liang L F, Wu H, Hu H L, et al. Enhanced blue and green up-con-version in hydrothermally synthesized hexagonal NaY1−xYbxF4:Ln3+ (Ln3+=Er3+ or Tm3+). J Alloy Compd, 2004, 368: 94–100

    Article  CAS  Google Scholar 

  10. Luo X X, Cao W H. Upconversion luminescence of holmium and ytterbium co-doped yttrium oxysulfide phosphor. Mater Lett, 2007, 61: 3696–3700

    Article  CAS  Google Scholar 

  11. Li B, Gu Z N, Lin J H, et al. Photoluminescence of Eu3+-activated GdTaO4 with both M type and m′ type structures. J Mater Sci, 2000, 35: 1139–1143

    Article  CAS  Google Scholar 

  12. Issler S L, Torardi C C. Solid state chemistry and luminescence of X-ray phosphors. J Alloy Compd, 1995, 229: 54–65

    Article  CAS  Google Scholar 

  13. Li B, Gu Z N, Lin J H, et al. Energy transfer in photoluminescence of YTaO4:Gd, Eu. Acta Phys-Chim Sin, 1999, 15(9): 794–798

    CAS  Google Scholar 

  14. Gu M, Xu X, Liu X L, et al. Preparation and characterization of GdTaO4:Eu3+ sol-gel luminescence thin films. J Sol-Gel Sci Techn, 2005, 35: 193–196

    Article  CAS  Google Scholar 

  15. Takayama T, Katsumata T, Komuro S, et al. Growth and characteristics of a new long afterglow phosphorescent yttrium tantalite crystal. J Crys Grow, 2005, 275: e2013–e2017

    Article  CAS  Google Scholar 

  16. Fiorenzo V, John C B, John A C, et al. Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3: Er3+. J Phys Chem B, 2003, 15: 2737–2743

    Google Scholar 

  17. Lei Y Q, Song H W, Yang L M. Upconversion luminescence, intensity saturation effect, and thermal effect in Gd2O3: Er3+,Yb3+ nanowires. J Chem Phys, 2005, 123: 174710–174714

    Article  PubMed  CAS  Google Scholar 

  18. Yang Z M, Xu S Q, Hu L L, et al. Frequency upconversion properties of Yb3+-Er3+ co-doped oxyfluoride germinate glass. J Mater Sci, 2004, 39: 2223–2225

    Article  CAS  Google Scholar 

  19. Guo H, Dong N, Yin M, et al. Visible upconversion in earth ion-doped Gd2O3 nanocrystals. J Phys Chem B, 2004, 108: 19205–19209

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cao WangHe.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 10374011)

About this article

Cite this article

Pang, T., Cao, W. Up-conversion luminescence of Er3+ doped and Er3+/Yb3+ co-doped YTaO4 . Chin. Sci. Bull. 53, 178–182 (2008). https://doi.org/10.1007/s11434-008-0024-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0024-z

Keywords

Navigation