Skip to main content
Log in

Oriented growth and assembly of zeolite crystals on substrates

  • Review
  • Chemical Engineering
  • Published:
Chinese Science Bulletin

Abstract

The aligned array and thin film of zeolites and molecular sieves possess a variety of potential applications in membrane separation and catalysis, chemical sensors, and microelectronic devices. There are two main synthesis methods for manufacturing the aligned arrays and thin films of zeolites and molecular sieves, i.e. in situ hydrothermal reaction and self-assembly of crystal grains on substrates. Both of them have attracted much attention in the scientific community worldwide. A series of significant progress has been made in recent years. By the in situ hydrothermal synthesis, the oriented nucleation and growth of zeolite and molecular sieve crystals can be achieved by modifying the surface properties of substrates or by changing the composition of synthesis solutions, leading to the formation of uniformly oriented multicrystal-aligned arrays or thin films. On the other hand, the crystal grains of zeolites and molecular sieves can be assembled onto the substrate surface in required orientation using different bondages, for instance, the microstructure in the array or thin film can be controlled. This review is going to summarize and comment the significant results and progress reported recently in manufacturing highly covered and uniformly aligned arrays or thin films of zeolites and molecular sieves. It involves (1) in situ growth of highly aligned zeolite arrays and thin films via embedding functional groups on the substrate surface, modifying the surface microstructure of substrates, as well as varying the composition of synthesis solutions; (2) assembly of zeolite and molecular sieve crystals on various substrates to form aligned arrays and thin films with full coverage by covalent, ionic, and intermolecular coupling interactions between crystals and substrates; (3) coupling surface assembly with microcontact printing or photoetching technique to produce patterned zeolite arrays and thin films. Finally, the functionality and applications of zeolite arrays and thin films are briefly introduced. Some critical issues are addressed for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang H Y, Zhang B Q, Lin Y S, et al. Synthesis of zeolite membranes. Chin Sci Bull, 2004, 49(24): 2547–2554

    Article  Google Scholar 

  2. Feng S, Bein T. Growth of oriented molecular sieve crystals on organophosphonate films. Nature, 1994, 368: 834–836

    Article  Google Scholar 

  3. Feng S, Bein T. Vertical aluminophosphate molecular sieve crystals grown at inorganic-organic interface. Science, 1994, 265:1839–1841

    Article  Google Scholar 

  4. Lee J S, Lee Y J, Yoon K B, et al. Synthesis of zeolite as ordered multicrystal arrays. Science, 2003, 301: 818–821

    Article  Google Scholar 

  5. Lee Y, Ryu W, Cho G, et al. Oriented growth of TS-1 zeolite ultrathin films on poly(ethylene oxide) monolayer templates. Langmuir, 2005, 21(13): 5651–5654

    Article  Google Scholar 

  6. Wang X D, Zhang B Q, Liu X F, et al. Synthesis of b-oriented TS-1 films on chitosan-modified α-Al2O3 substrates. Adv Mater, 2006, 18(24): 3261–3265

    Article  Google Scholar 

  7. Lang L. In situ growth of continuous b-oriented silicalite-1 membranes. Dissertation for the Master Degree. Tianjin: Tianjin University, 2006. 36–37

    Google Scholar 

  8. Wu C N, Chao K J, Shih H C, et al. Oriented growth of molecular sieves on inorganic membranes. Adv Mater, 1996, 8(12): 1008–1012

    Article  Google Scholar 

  9. Tsai T G, Chao K J, Shih H C, et al. Aligned aluminophosphate molecular sieves crystallized on flouting anodized alumina by hydrothermal microwave heating. Adv Mater, 1997, 9(15): 1154–1157

    Article  Google Scholar 

  10. Munoz T, Balkus K J. Preparation of oriented zeolite UTD-1 membranes via pulsed laser ablation. J Am Chem Soc, 1999, 121(1):139–146

    Article  Google Scholar 

  11. Lang L, Zhang B Q, Liu X F. Synthesis of oriented silicalite-1 films on glass plate and its growth mechanism. J Chem Ind Eng (China), 2006, 57(9): 230–233

    Google Scholar 

  12. Wang Z, Yan Y. Controlling crystal orientation in zeolite MFI thin films by direct in situ crystallization. Chem Mater, 2001, 13(3):1101–1107

    Article  Google Scholar 

  13. Wang Z, Wang H, Yan Y, et al. Pure-silica zeolite low-k dielectric thin films. Adv Mater, 2001, 13(10): 746–749

    Article  Google Scholar 

  14. Li S, Wang X, Yan Y, et al. Molecular sieving in a nanoporous boriented pure-silica-zeolite MFI monocrystal film. J Am Chem Soc, 2004, 126(13): 4122–4123

    Article  Google Scholar 

  15. Li S, Li Z, Yan Y, et al. TEM investigation of formation mechanism of monocrystal-thick b-oriented pure silica zeolite MFI film. J Am Chem Soc, 2004, 126(34): 10732–10737

    Article  Google Scholar 

  16. Zhou M, Zhang B Q, Liu X F. Oriented growth of MFI zeolite membrane without transition zone by in-situ method. Chin J Inorg Chem, 2006, 22(10): 1750–1754

    Google Scholar 

  17. Seike T, Matsuda M, Miyake M. Preparation of b-axis-oriented MFI zeolite thin films using slow dissolution of source material. J Am Ceram Soc, 2004, 87(8): 1585–1587

    Article  Google Scholar 

  18. Yoon K B. Organization of zeolite microcrystals for production of functional materials. Acc Chem Res, 2007, 40(1): 29–40

    Article  Google Scholar 

  19. Yan Y, Bein T. Zeolite thin films with tunable molecular sieve function. J Am Chem Soc, 1995, 117(40): 9990–9994

    Article  Google Scholar 

  20. Mintova S, Mo S, Bein T. Nanosized AlPO4-5 molecular sieves and ultrathin films prepared by microwave synthesis. Chem Mater, 1998, 10(12): 4030–4036

    Article  Google Scholar 

  21. Kulak A, Lee Y J, Yoon K B, et al. Orientation-controlled monolayer assembly of zeolite crystals on glass and mica by covalent linkage of surface-bound epoxide and amine groups. Angew Chem Int Ed, 2000, 39(5): 950–953

    Article  Google Scholar 

  22. Choi S Y, Lee Y J, Yoon K B, et al. Monolayer assembly of zeolite crystals on glass with fullerene as the covalent linker. J Am Chem Soc, 2000, 122(21): 5201–5209

    Article  Google Scholar 

  23. Lee G S, Lee Y J, Yoon K B, et al. Orientation-controlled monolayer assembly of zeolite crystals on glass using terephthaldicarboxaldehyde as a covalent linker. Tetrahedron, 2000, 56(36): 6965–6968

    Article  Google Scholar 

  24. Chun Y S, Ha K, Yoon K B, et al. Diisocyanates as novel molecular binders for monolayer assembly of zeolite crystals on glass. Chem Commun, 2002, (17): 1846–1847

    Article  Google Scholar 

  25. Ha K, Lee Y J, Yoon K B, et al. Facile assembly of zeolite monolayers on glass, silica, alumina, and other zeolites using 3-halopropylsilyl reagents as covalent linkers. Adv Mater, 2000, 12(15):1114–1117

    Article  Google Scholar 

  26. Lai Z, Bonilla G, Tsapatsis M, et al. Microstructural optimization of a zeolite membrane for organic vapor separation. Science, 2003, 300:456–460

    Google Scholar 

  27. Choi J, Lai Z, Tsapatsis M, et al. Uniformly a-oriented MFI zeolite films by secondary growth. Angew Chem Int Ed, 2006, 45(7):1154–1158

    Article  Google Scholar 

  28. Lee G S, Lee Y J, Yoon K B, et al. Preparation of flexible zeolite-tethering vegetable fibers. Adv Mater, 2001, 13(19): 1491–1495

    Article  Google Scholar 

  29. Park J S, Lee Y J, Yoon K B. Marked increase in the binding strength between the substrate and the covalently attached monolayers of zeolite microcrystals by lateral molecular cross-linking between the neighboring microcrystals. J Am Chem Soc, 2004, 126(7): 1934–1935

    Article  Google Scholar 

  30. Kulak A, Park Y S, Yoon K B, et al. Polyamines as strong molecular linkers for monolayer assembly of zeolite crystals on flat and curved Glass. J Am Chem Soc, 2000, 122(38): 9308–9309

    Article  Google Scholar 

  31. Ha K, Park J S, Yoon K B, et al. Aligned monolayer assembly of zeolite crystals on platinum, gold, and indium-tin oxide surfaces with molecular linkages. Micropor Mesopor Mater, 2004, 72(1–3):91–98

    Article  Google Scholar 

  32. Lee J S, Ha K, Yoon K B, et al. Ultrasound-aided remarkably fast assembly of monolayers of zeolite crystals on glass with a very high degree of lateral close packing. Adv Mater, 2005, 17(7): 837–841

    Article  Google Scholar 

  33. Lee J S, Lim H, Yoon K B, et al. Facile Monolayer Assembly of fluorophore-containing zeolite rods in uniform orientations for anisotropic photoluminescence. Angew Chem Int Ed, 2006, 45(32):5288–5292

    Article  Google Scholar 

  34. Zhang B Q, Zhou M, Liu X F, et al. Monolayer assembly of oriented zeolite crystals on α-Al2O3 supported polymer thin films. Adv Mater, doi:10.1002/adma.200701271

  35. Chau J L H, Leung A Y L, Yeung K L. Zeolite micromembranes. Lab Chip, 2003, 3(2): 53–55

    Article  Google Scholar 

  36. Yang G, Zhang X, Yeung K L, et al. A novel method for the assembly of nano-zeolite crystals on porous stainless steel microchannel and then zeolite film growth. J Phys Chem Solids, 2007, 68(1):26–31

    Article  Google Scholar 

  37. Lee G S, Lee Y J, Yoon K B. Layer-by-layer assembly of zeolite crystals on glass with polyelectrolytes as ionic linkers. J Am Chem Soc, 2001, 123(40): 9769–9779

    Article  Google Scholar 

  38. Wang Y J, Tang Y, Wang X D, et al. Fabrication of zeolite coatings on stainless steel grids. J Mater Sci Lett, 2001, 20(23): 2091–2094

    Article  Google Scholar 

  39. Hedlund J, Mintova S, Sterte J. Controlling the preferred orientation in silicalite-1 films synthesized by seeding. Micropor Mesopor Mater, 1999, 28(1): 185–194

    Article  Google Scholar 

  40. Hedlund J, Jareman F, Bons A J, et al. A masking technique for high quality MFI membranes. J Membr Sci, 2003, 222(1–2): 163–179

    Article  Google Scholar 

  41. Hedlund J, Schoeman B, Sterte J. Ultrathin oriented zeolite LTA films. Chem Commun, 1997, (13): 1193–1194

    Article  Google Scholar 

  42. Kornic S, Baker M. Nanoporous zeolite film electrodes. Chem Commun, 2002, (16): 1700–1701

  43. Mintova S, Hedlund J, Sterte J, et al. Continuous films of zeolite ZSM-5 on modified gold surfaces. Chem Commun, 1997, (1): 15–16

  44. Engstrom V, Mihailova B, Sterte J, et al. The effect of seed size on the growth of silicalite-1 films on gold surfaces. Micropor Mesopor Mater, 2000, 38(1): 51–60

    Article  Google Scholar 

  45. Boudreau L C, Kuck J A, Tsapatsis M. Deposition of oriented zeolite A films: in situ and secondary growth. J Membr Sci, 1999, 152(1):41–59

    Article  Google Scholar 

  46. Park J S, Lee G S, Yoon K B. Micropatterned monolayer assembly of zeolite microcrystals on glass by ionic linkages. Micropor Mesopor Mater, 2006, 96(1–3): 1–8

    Article  Google Scholar 

  47. Park J S, Lee G S, Yoon K B, et al. Organization of microcrystals on glass by adenine-thymine hydrogen bonding. J Am Chem Soc, 2002, 124(45): 13366–13367

    Article  Google Scholar 

  48. Cho G, Lee J S, Glatzhofer D T, et al. Ultra-thin zeolite films through simple self-assembled processes. Adv Mater, 1999, 11(6):497–499

    Article  Google Scholar 

  49. Yin X, Zhu G, Yang W, et al. Stainless-steel-net-supported zeolite NaA membrane with high permeance and high permselectivity for oxygen over nitrogen. Adv Mater, 2005, 17(16): 2006–2010

    Article  Google Scholar 

  50. Guo H, Yang W, Qiu S, et al. Hierarchical growth of large-scale ordered zeolite silicalite-1 membranes with high permeability and selectivity for recycling CO2. Angew Chem Int Ed, 2006, 45(42):7053–7056

    Article  Google Scholar 

  51. Jung K T, Shul Y G. Preparation of ZSM-5 zeolite film and its formation mechanism. J Membr Sci, 2001, 191(1–2): 189–197

    Article  Google Scholar 

  52. Lovallo M C, Tsapatsis M. Preferentially oriented submicron silicalite membrane. AIChE J, 1996, 42(11): 3020–3029

    Article  Google Scholar 

  53. Ban T, Ohwaki T, Ohya Y, et al. Preparation of a completely oriented molecular sieve membrane. Angew Chem Int Ed, 1999, 38(22):3324–3326

    Article  Google Scholar 

  54. Mintova S, Bein T. Microporous films prepared by spin-coating stable colloidal suspensions of zeolites. Adv Mater, 2001, 13(24):1880–1883

    Article  Google Scholar 

  55. Pan M, Lin Y S. Template-free secondary growth synthesis of MFI type zeolite membranes. Micropor Mesopor Mater, 2001, 43(3):391–327

    Article  Google Scholar 

  56. Yuan W H, Lin Y S, Yang W S. Molecular sieving MFI-type zeolite membranes for pervaporation separation of xylene isomers. J Am Chem Soc, 2004, 126(15): 4776–4777

    Article  Google Scholar 

  57. Liu X F. Synthesis of MFI-type zeolite membranes and application in selective ethanol permeation. Dissertation for the Doctoral Degree. Tianjin: Tianjin Universtiy, 2007. 63–80

    Google Scholar 

  58. Huang L, Yan Y, Zhao D, et al. Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals. J Am Chem Soc, 2000, 122(14): 3530–3531

    Article  Google Scholar 

  59. Ha K, Lee Y J, Yoon K B, et al. Micropatterning of oriented zeolite monolayers on glass by covalent linkage. Adv Mater, 2000, 12(21):1614–1617

    Article  Google Scholar 

  60. Ha K, Lee Y J, Yoon K B, et al. Photochemical pattern transfer and patterning of continuous zeolite films on glass by direct dipping in synthesis gel. Adv Mater, 2001, 13(8): 594–596

    Article  Google Scholar 

  61. Li S, Demmelmaier C, Yan Y, et al. Micropatterned oriented zeolite monolayer films by direct in situ crystallization. Chem Mater, 2003, 15(14): 2687–2689

    Article  Google Scholar 

  62. Sun W, Lam K F, Yeung K L, et al. Zeolite micropattern for biological applications. Chem Commun, 2005, (39): 4911–4912

  63. Wang H, Wang Z, Yan Y, et al. Surface patterned porous films by convection-assisted dynamic self-assembly of zeolite nanoparticles. Langmuir, 2001, 17(9): 2572–2574

    Article  Google Scholar 

  64. Hwang Y K, Lee U H, Park S E, et al. Microwave-induced fabrication of MFI zeolite crystal films onto various metal oxide substrates. Chem Lett, 2005, 34(12): 1596–1597

    Article  Google Scholar 

  65. Kim H S, Lee S M, Yoon K B, et al. Aligned inclusion of hemicyanine dyes into silica zeolite films for second harmonic generation. J Am Chem Soc, 2004, 126(2): 673–682

    Article  Google Scholar 

  66. Mass H, Calzaferri G. Trapping energy from and injecting energy into dye-zeolite nanoantennae. Angew Chem Int Ed, 2002, 41(13):2284–2288

    Article  Google Scholar 

  67. Calzaferri G, Huber S, Maas H, et al. Host-guest antenna materials. Angew Chem Int Ed, 2003, 42(32): 3732–3758

    Article  Google Scholar 

  68. Ruiz A Z, Li H, Calzaferri G. Organizing supramolecular functional dye-zeolite crystals. Angew Chem Int Ed, 2006, 45(32): 5282–5287

    Article  Google Scholar 

  69. Huber S, Ruiz A Z, Calzaferri G, et al. Optical spectroscopy of inorganic-organic host-guest nanocrystals organized as oriented monolayers. Inorg Chim Acta, 2007, 360(3): 869–875

    Article  Google Scholar 

  70. Li Z, Johnson M C, Yan Y, et al. Mechanical and dielectric properties of pure-silica-zeolite low-k materials. Angew Chem Int Ed, 2006, 45(38): 6329–6332

    Article  Google Scholar 

  71. Li Z, Li S, Yan Y, et al. Effects of crystallinity in spin-on pure-silica-zeolite MFI low-dielectric-constant films. Adv Funct Mater, 2004, 14(10): 1019–1024

    Article  Google Scholar 

  72. Chen Z, Holmberg B, Yan Y, et al. Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell. Chem Mater, 2006, 18(24): 5669–5675

    Article  Google Scholar 

  73. Li S, Martinek J G, Noble R D, et al. High-pressure CO2/CH4 separation using SAPO-34 membranes. Ind Eng Chem Res, 2005, 44(9):3220–3228

    Article  Google Scholar 

  74. Arruebo M, Falconer J L, Noble R D. Separation of binary C5 and C6 hydrocarbon mixtures through MFI zeolite membranes. J Membr Sci, 2006, 269(1–2): 171–176

    Article  Google Scholar 

  75. Choi J, Ghosh S, Tsapatsis M. MFI zeolite membranes from a-and randomly oriented monolayers. Adsorption, 2006, 12(5–6): 339–360

    Article  Google Scholar 

  76. Bowen T C, Noble R D, Falconer J L. Fundamentals and applications of pervaporation through zeolite membranes. J Membr Sci, 2004, 245(1-2): 1–33

    Article  Google Scholar 

  77. McLeary E E, Jansen J C, Kapteijn F. Zeolite based films, membranes and membrane reactors: Progress and prospects. Micropor Mesopor Mater, 2006, 90(1–3): 198–220

    Article  Google Scholar 

  78. Whitesides G M, Grzybowski B. Self-assembly at all scales. Science, 2002, 295: 2418–2421

    Article  Google Scholar 

  79. Glotzer S C, Solomon M J, Kotov N A. Self-assembly: From nanoscale to microscale colloids. AIChE J, 2004, 50(12): 2978–2985

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BaoQuan Zhang.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20476074 and 20636030) and the Natural Science Foundation of Tianjin (Grant No. 06YFJMJC04700)

About this article

Cite this article

Zhou, M., Zhang, B. & Liu, X. Oriented growth and assembly of zeolite crystals on substrates. Chin. Sci. Bull. 53, 801–816 (2008). https://doi.org/10.1007/s11434-008-0021-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0021-2

Keywords

Navigation