Skip to main content
Log in

Construction of an electronic physical map of Magnaporthe oryzae using genomic position-ready SSR markers

  • Articles
  • Genetics
  • Published:
Chinese Science Bulletin

Abstract

Magnaporthe oryzae is a model for plant pathogenic filamentous fungi. We have assembled a simple sequence repeat (SSR)-based physical map of the species, using in silico sequence data. A set of 120 SSR markers was developed from the genomic sequence of the reference isolate 70-15. These markers were readily amplified from the genomic DNA of other isolates, and high levels of allelic variation characterised the parental isolates of the two crosses tested. All the markers were locatable to one of the seven M. oryzae chromosomes. An SSR-based physical in silico map was constructed, and pre-existing SSR and RFLP loci were integrated into the map, along with 23 Avr (avirulence) genes and two other genes of importance to the plant/pathogen interaction. This map provides a platform for population genetics and functional genomics studies in the model pathogen, and even in other evolutionally related pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ou S H. Rice Diseases, 2nd ed. Kew Surrey: Commonwealth Mycological Institute, 1985. 109–201

    Google Scholar 

  2. Orbach M J, Chumley F C, Valent B. Electrophoretic karyotypes of Magnaporthe grisea pathogens of diverse grasses. Mol Plant-Microbe Interact, 1996, 9: 261–271

    Google Scholar 

  3. Zhu H, Blackmon B, Sasinowski M, et al. Physical map and organization of chromosome 7 in the rice blast fungus, Magnaporthe grisea. Genome Res, 1999, 9: 739–750

    Google Scholar 

  4. Talbot N J. Having a blast: Exploring the pathogenicity of Magnaporthe grisea. Trends Microbiol, 1995, 3: 9–16

    Article  Google Scholar 

  5. Dean R A, Talbot N J, Ebbole D J, et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 2005, 434: 980–986

    Article  Google Scholar 

  6. Rho H S, Kang S, Lee Y H. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Mol Cells, 2001, 12: 407–411

    Google Scholar 

  7. Kaye C, Milazzo J, Rozenfeld S, et al. The development of simple sequence repeat markers for Magnaporthe grisea and their integration into an established genetic linkage map. Fungal Genet Biol, 2003, 40: 207–214

    Article  Google Scholar 

  8. Skinner D Z, Leung H, Leong S A. Genetic map of the blast fungus Magnaporthe grisea. In: O’Brien S J, ed. Genetic Maps. 5th ed. Cold Spring Harbor: Cold Spring Harbor Laboratory, 1990. 382–383

    Google Scholar 

  9. Romao J, Harmer J E. Genetic organization of a repeated DNA sequence family in the rice blast fungus. Proc Natl Acad Sci USA, 1992, 89: 5316–5320

    Article  Google Scholar 

  10. Budde A D, Smith J R, Farman M L, et al. Genetic map of the fungus Magnaporthe grisea. In: O’Brien S J, ed. Genetic Maps. 6th ed. Cold Spring Harbor: Cold Spring Harbor Laboratory, 1993. 3110–3111

    Google Scholar 

  11. Skinner D Z, Budde A D, Farman M L, et al. Genome organization of Magnaporthe grisea: Genetic map, electrophoretic karyotype, and occurrence of repeated DNAs. Theor Appl Genet, 1993, 87: 545–557

    Article  Google Scholar 

  12. Sweigard J A, Valent B, Orbach M J, et al. Genetic map of the rice blast fungus Magnaporthe grisea. In: O’Brien S J, ed. Genetic Maps. 6th ed. Cold Spring Harbor: Cold Spring Harbor Laboratory, 1993. 3112–3117

    Google Scholar 

  13. Farman M L, Leong S A. Genetic and physical mapping of telomeres in the rice blast fungus, Magnaporthe grisea. Genetics, 1995, 140: 479–492

    Google Scholar 

  14. Nitta N, Farman M L, Leong S A. Genome organization of Magnaporthe grisea: Integration of genetic maps, clustering of transposable elements and identification of genome duplications and rearrangements. Theor Appl Genet, 1997, 95: 20–32

    Article  Google Scholar 

  15. Martin S L, Blackmon B P, Rajagopalan R, et al. MagnaportheDB: A federated solution for integrating physical and genetic map data with BAC end derived sequences for the rice blast fungus Magnaporthe grisea. Nucleic Acids Res, 2002, 1: 121–124

    Article  Google Scholar 

  16. Akagi H, Yokozeki Y, Inagaki A, et al. Microsatellite DNA markers for rice chromosomes. Theor Appl Genet, 1996, 93: 1071–1077

    Article  Google Scholar 

  17. Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res, 1984, 12: 4127–4138

    Article  Google Scholar 

  18. Weber J L, May P E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet, 1989, 44: 388–396

    Google Scholar 

  19. McCouch S R, Teytelman L, Xu Y B, et al. Development and mapping of 2240 new SSR markers for rice (Oryzae sativa L.). DNA Res, 2002, 9: 199–207

    Article  Google Scholar 

  20. Moretzsohn M C, Leoi L, Proite K, et al. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet, 2005, 111: 1060–1071

    Article  Google Scholar 

  21. Li C Y, Li J B, Zhou X G, et al. Frequency and distribution of microsatellite in the whole genome of rice blast fungus Magnaporthe grisea. Chin J Rice Sci (in Chinese with English abstract), 2004, 18: 269–273

    Google Scholar 

  22. Brondani C, Brondani R P V, Garridon L R, et al. Development of microsatellite markers for genetic analysis of Magnaporthe grisea. Genet Mol Biol, 2000, 23: 753–762

    Article  Google Scholar 

  23. Kim N S, Armstrong K C, Fedak G, et al. A microsatellite sequence from the rice blast fungus (Magnaporthe grisea) distinguishes between the centromeres of Hordeum vulgare and H. bulbosum in hybrid plants. Genome, 2002, 45: 165–174

    Article  Google Scholar 

  24. Chen X, Chao Y G, McCouch S R. Sequence divergence of rice microsatellites in Oryza and other plant species. Mol Gen Genomics, 2002, 268: 331–343

    Article  Google Scholar 

  25. Ma J H, Wang L, Feng S J, et al. Identification and fine mapping of AvrPi15, a novel avirulence gene of Magnaporthe grisea. Theor Appl Genet, 2006, 113: 875–883

    Article  Google Scholar 

  26. Feng S J, Wang L, Ma J H, Lin F, and Pan Q H. Genetic and physical mapping of AvrPi7, a novel avirulence gene of Magnaporthe oryzae using physical position-ready markers. Chin Sci Bull, 2007, 52: 903–911

    Article  Google Scholar 

  27. Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genomocs, 1996, 252: 597–607

    Google Scholar 

  28. Li C Y, Li J B, Zhou X G, et al. Frequency and distribution of microsatellites in the genome of filamentous fungus, Neurospora crassa. Chinese J Rice Sci (in Chinese with English abstract), 2004, 37: 851–858

    Google Scholar 

  29. Li C Y, Li J B, Zhou X G, et al. Frequency and distribution of variable-number tandem repeats in the genome of Aspergillus niculans. Acta Genet Sin (in Chinese with English abstract), 2005, 32: 538–544

    Google Scholar 

  30. Wu W H, Wang L, Pan Q H. Comparison of genetic structures of two rice blast gungus populations originated from Jiangsu and Yunnan Provinces, China. Chin J Tropical Crops (in Chinese with English abstract), 2006, 17: 95–100

    Google Scholar 

  31. Hayashi N, Li C Y, Li J R, et al. In vitro production on rice plants of perithecia of Magnaporthe grisea from Yunnan, China. Mycol Res, 1997, 101: 1308–1310

    Article  Google Scholar 

  32. Zhu Y Y, Chen H R, Fan J H, et al. Genetic diversity and diseases control in rice. Nature, 2000, 406: 718–722

    Article  Google Scholar 

  33. Cho Y G, Ishii T, Temnykh S, et al. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Thero Appl Genet, 2000, 100: 713–722

    Article  Google Scholar 

  34. Upupa S M, Robertson L D, Weigand F, et al. Allelic variation at (TTA)n microsatellite loci in a word collection of chickpea (Cicer arietinum L.) germplasm. Mol Gen Genomics, 1999, 261: 354–363

    Google Scholar 

  35. Burstin J, Deniot G, Potier J, Weinachter C, et al. Microsatellite polymorphism in Pisum sativum. Plant Breed, 2001, 120: 311–317

    Article  Google Scholar 

  36. Sweigard J A, Carroll A M, Kang S, et al. Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell, 1995, 7: 1221–1233

    Article  Google Scholar 

  37. Mandel M A, Crouch V W, Gunawardena U P, et al. Physical mapping of the Magnaporthe grisea AVR1-MARA locus, reveals the virulent allele contains two deletions. Mol Plant-Microbe Interact, 1997, 10: 1102–1105

    Article  Google Scholar 

  38. Farman M L, Leong S A. Chromosome walking to AVR1-CO39 avirulence gene of Magnaporthe grisea discrepancy between the physical and genetic maps. Genetics, 1998, 150: 1049–1058

    Google Scholar 

  39. Dioh W, Tharreau D, Notteghem J L, et al. Mapping of avirulence genes in the rive blast fungus, Magnaporthe grisea, with RFLP and RAPD markers. Mol Plant-Microbe Interact, 2000, 13: 217–227

    Article  Google Scholar 

  40. Orbach M J, Farrall L, Sweigard J A, et al. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell, 2000, 12: 2019–2032

    Article  Google Scholar 

  41. Wang B H, Lu G D, Lin W M, et al. Genetic analysis and molecular marker of Avr-Pi1, Avr-Pi2 and Avr-Pi4a of Magnaporthe grisea. Acta Genet Sin, 2002, 29: 820–826

    Google Scholar 

  42. Wang Y L, Kaye C, Bordat A, et al. Construction of genetic linkage map and location of avirulence genes from cross CH63 and TH16 of Magnaporthe grisea. Chin J Rice Sci (in Chinese with English abstract), 2005, 19: 160–166

    Google Scholar 

  43. Böhnert H U., Fudal I, Dioh W, et al. A putative polyketide synthase/peptide synthetae from Magnaporthe grisea signals pathogen attack to resistance rice. Plant Cell, 2004, 16: 2499–2513

    Article  Google Scholar 

  44. Luo C X, Fujita Y, Yasuda N, et al. Identification of Magnaporthe oryzae avirulence genes to three rice blast resistance genes. Plant Dis, 2004, 88: 265–270

    Article  Google Scholar 

  45. Yasuda N, Noguchi M T, Fijita Y. Identification of an avirulence gene in the fungus Magnaporthe grisea corresponding to a resistance gene at the Pik locus. Phytopathology, 2005, 95: 768–772

    Article  Google Scholar 

  46. Chen Q H, Wang Y C, Zheng X B. Genetic analysis and molecular mapping of the avirulence gene PRE1, a gene for host-species specificity in the rice blast Magnaporthe grisea. Genome, 2006, 49: 873–881

    Article  Google Scholar 

  47. Zhang L H, Yan J Y, Zho W S, et al. Mapping of avirulence gene AVR-Pik m in Magnaporthe grisea. Acta Phytopathol Sin (in Chinese with English abstract), 2006, 6: 116–122

    Google Scholar 

  48. Kang S, Chumley F G, Valent B. Isolation of the mating-type genes of the phytopathogenic fungus Magnaporthe grisea using genomic subtraction. Genetics, 1994, 138: 289–296

    Google Scholar 

  49. Talbot N J, Ebbole D J, Hamer J E. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell, 1993, 5: 1575–1590

    Article  Google Scholar 

  50. Zhu H, Choi S, Johnston A K, et al. A large insert (130 kbp) bacterial artificial chromosome (BAC) library of the rice blast fungus Magnaporthe grisea: genome analysis, contig assembly and gene cloning. Fungal Genet Biol, 1997, 21: 337–347

    Article  Google Scholar 

  51. Lagercrantz U, Ellegren H, Andersson L. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res, 1993, 21: 1111–1115

    Article  Google Scholar 

  52. Atallah Z K, Larget B, Chen X, et al. High genetic diversity, phenotypic uniformity, and evidence of outcrossing in Sclerotinia sclerotiorum in the Columbia Basin of Washington State. Phytopathology, 2004, 94, 737–742

    Article  Google Scholar 

  53. Ivors K, Garbelotto M, Vries I D, et al. Microsatellite markers identify three lineages of Phytophthora ramorum in US nurseries, yet single lineages in US forest and European nursery populations. Mol Ecol, 2006, 15: 1493–1505

    Article  Google Scholar 

  54. Li Y C, Korol A B, Fahima T et al. Microsatellites within genes: structure, function, and evolution. Mol Biol Evol, 2004, 21: 991–1007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan QingHua.

Additional information

These Authors contributed equally to this study

Supported by the National Basic Research Program of China (Grant No. 2006CB100206), Program for Changjiang Scholars and Innovation Research Team in University (Grant No. IRT0448) and the Natural Science Foundation of Guangdong Province (Grant No. 039254; 07300695)

About this article

Cite this article

Feng, S., Ma, J., Lin, F. et al. Construction of an electronic physical map of Magnaporthe oryzae using genomic position-ready SSR markers. Chin. Sci. Bull. 52, 3346–3354 (2007). https://doi.org/10.1007/s11434-007-0498-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0498-0

Keywords

Navigation