Skip to main content
Log in

A kinetic model for describing effect of the external surface concentration of TiO2 on the reactivity of eggshell activated carbon supported TiO2 photocatalyst

  • Articles
  • Environmental Chemistry
  • Published:
Chinese Science Bulletin

Abstract

The porous support supported TiO2 is considered to be the promising photocatalyst due to the fact that it is easily recovered from water and has high capacity to mineralize pollutants. Obviously, the expected structure of this kind of photocatalyst is egg-shell, that is, TiO2 is mainly on the external surface of the porous support. The reactivity of the supported photocatalyst strongly depends on the concentration of TiO2 on the external surface of the porous support. In this study, a kinetic model was developed to describe the effect of the external surface concentration of TiO2 (CESC) on the reactivity of egg-shell activated carbon (AC) supported TiO2 photocatalysts. It was found that the obtained model precisely described the effect of CESC, on the reactivity of TiO2/AC photocatalysts. This study can be used to deeply understand the performance of TiO2/AC catalysts and to provide valuable information on designing efficient supported TiO2 photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

R 1 :

concentration of the pollutant during degradation

I :

illumination intensity

K :

reaction rate constant

s :

the surface area of a TiO2 particle

a :

averaged absorption coefficient

γ :

shape factor

R :

dimension of the TiO2 particle

I 0 :

illumination intensity reaching the wall of the photoreactor

n :

number of TiO2 particles towards the lamp

z :

thickness of the hybrid film of TiO2 and AC

σ:

effective illuminated area of the TiO2 particle

ϑ :

fraction of volume taken by TiO2 in the hybrid film of TiO2 and AC

C ESC :

concentration of TiO2 in the hybrid film of TiO2 and AC

D :

dimension of TiO2/AC particle

H :

height of the photoreactor

L :

radius of the photoreactor

N :

number of TiO2/AC particle in the whole solution

σ′ :

effective illumination area of TiO2/AC particle in the solution

p p :

density of TiO2/AC particle

C catalyst :

concentration of TiO2/AC in the solution

k 1 :

true rate constant

K′ :

adsorption constant

k app :

apparent rate constant of pseudo-first order

References

  1. Konstantinou I, Albanis T. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Appl Catal B Environ, 2004, 49(1): 1–14

    Article  Google Scholar 

  2. Sopyan I, Watanabe M, Murasawa S et al. An efficient TiO2 thin-film photocatalyst: Photocatalytic properties in gas-phase acetaldehyde degradation. J Photochem Photobiol A, 1996, 98(1–2): 79–86

    Article  Google Scholar 

  3. Araña J, Doña-Rodríguez J, Tello Rendón E et al. TiO2 activation by using activated carbon as a support: Part I. Surface characterisation and decantability study. Appl Catal B Environ, 2003, 44(2): 161–172

    Article  Google Scholar 

  4. Song P, Irie Y, Shigesato Y. Crystallinity and photocatalytic activity of TiO2 films deposited by reactive sputtering with radio frequency substrate bias. Thin Solid Films, 2006, 496(1): 121–125

    Article  Google Scholar 

  5. Gerischer H. Photocatalysis in aqueous solution with small TiO2 particles and the dependence of the quantum yield on particle size and light intensity. Electrochim Acta, 1995, 40(10): 1277–1281

    Article  Google Scholar 

  6. Chen Y, Dionysiou D. TiO2 photocatalytic films on stainless steel: The role of degussa P 25 in modified sol-gel methods. Appl Catal B Environ 2006, 63(1): 255–264

    Article  Google Scholar 

  7. Zhang X, Zhou M, Lei L. Preparation of photocatalytic TiO2 coatings of nanosized particles on activated carbon by AP-MOCVD. Carbon, 2005, 43(8): 1700–1708

    Article  Google Scholar 

  8. Ding Z, Hu X, Yue P et al. Novel silica gel supported TiO2 photocatalyst synthesized by CVD method. Langmuir, 2000, 16(15): 6216–6222

    Article  Google Scholar 

  9. Zhang X, Zhou M, Lei L. TiO2 photocatalyst deposition by MOCVD on activated carbon. Carbon, 2006, 44(2): 325–333

    Article  Google Scholar 

  10. Jung S, Kim S, Imaishi N et al. Effect of TiO2 thin film thickness and specific surface area by low-pressure metal-organic chemical vapor deposition on photocatalytic activities. Appl Catal B Environ, 2005, 55(4): 253–257

    Article  Google Scholar 

  11. Zhang X, Zhou M, Lei L. Enhancing the concentration of TiO2 photocatalyst on the external surface of activated carbon by MOCVD. Mater Res Bull, 2005, 40(11): 1899–1904

    Article  Google Scholar 

  12. Zhang X, Zhou M, Lei L. Preparation of anatase TiO2 supported on alumina by different metal organic chemical vapor deposition methods. Appl Catal A Gen, 2005, 282(1–2): 285–293

    Article  Google Scholar 

  13. Torimoto T, Ito S, Kuwabata S, et al. Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide. Environ Sci Technol, 1996, 30(4): 1275–1281.

    Article  Google Scholar 

  14. Lu M, Chen J, Chang K. Effect of adsorbents coated with titanium dioxide on the photocatalytic degradation of propoxur. Chemosphere, 38(3): 617–627

  15. Snell F, Ettre L. Encyclopedia of Industrial Chemical Analysis. Berlin: Interface, 1974. 150–162

    Google Scholar 

  16. Ding Z, Lu G, Greenfield P. A kinetic study on photocatalytic oxidation of phenol in water by silica-dispersed titania nanoparticles. J Colloid Interface Sci, 2000, 232(1): 1–9

    Article  Google Scholar 

  17. Gerischer H, Heller A. Photocatalytic oxidation of organic molecules at TiO2 particles by sunlight in aerated water. J Electrochem Soc, 1992, 139(1): 113–119

    Article  Google Scholar 

  18. Chang H, Wu N, Zhu F. A kinetic model for photocatalytic degradation of organic contaminants in a thin-film TiO2 catalyst. Water Res, 2000, 34(2): 407–416

    Article  Google Scholar 

  19. Bird R, Stewart W, Lightfoot E. Transport Phenomena. New York: Wiley, 1960. 108–120

    Google Scholar 

  20. Eagles D. Polar modes of lattice vibration and polaron coupling constants in rutile (TiO2). J Phys Chem Solids, 1964, 25(11): 1243–1251

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei LeCheng.

About this article

Cite this article

Zhang, X., Lei, L. A kinetic model for describing effect of the external surface concentration of TiO2 on the reactivity of eggshell activated carbon supported TiO2 photocatalyst. Chin. Sci. Bull. 52, 3339–3345 (2007). https://doi.org/10.1007/s11434-007-0497-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0497-1

Keywords

Navigation