Skip to main content
Log in

A comparison study on the melt crystallization kinetics of long chain branched and linear isotactic polypropylenes

  • Articles
  • Polymer Chemistry
  • Published:
Chinese Science Bulletin

Abstract

The isothermal and non-isothermal crystallization kinetics of LCBPP and linear-iPP was investigated by optical microscopy and differential scanning calorimetry (DSC). The optical microscopy results in the isothermal crystallization process show that the crystals of LCBPP grow slower than the crystals of the linear-iPP. This originates from the low chain mobility, or in other words, the lower chain diffusion rate of LCBPP due to the existence of long side chains. The DSC results in the isothermal crystallization process show that the LCBPP exhibits, however, a higher overall crystallization rate with respect to the linear-iPP. This is related to the higher nucleation ability of LCBPP since the isothermal crystallization process of both LCBPP and linear-iPP are nucleation-dominated. Avrami analysis indicates that the nucleation nature and crystal growth manner of LCBPP and linear-iPP are about the same. The analyses of the non-isothermal crystallization processes indicate an increment in crystallization rate with increasing cooling rate. But at any cooling rate, the linear-iPP crystallizes more quickly than the LCBPP. This implies that the non-isothermal crystallization processes of LCBPP and linear-iPP are diffusion-dominated, in which the lower chain diffusion rate of LCBPP results in the slower crystallization of it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Platz C. Presentation at the International Conference on Polyolefins, Houston, TX, U.S.A. 2001

  2. McDonald J N. Thermoforming. In: Encyclopedia of Polymer Science and Engineering, Vol 16. New York: John Wiley & Sons Inc, 1989. 807

    Google Scholar 

  3. Lu B, Chung T C. Synthesis of long chain branched polypropylene with relatively well-defined molecular structure. Macromolecules, 1999, 32: 8678–8680

    Article  CAS  Google Scholar 

  4. Weng W, Marke E J, Dekmezian A H. Synthesis of vinyl-terminated isotactic poly(propylene). Macromol Rapid Commun 2000, 21: 1103–1107

    Article  CAS  Google Scholar 

  5. Weng W, Marke E J, Dekmezian A H. Synthesis of long-chain branched propylene polymers via macromonomer incorporation. Macromol Rapid Commun 2001, 22: 1488–1492

    Article  CAS  Google Scholar 

  6. Weng W, Hu W, Dekmezian A H, et al. Long chain branched isotactic polypropylene. Macromolecules, 2002, 35: 3838–3843

    Article  CAS  Google Scholar 

  7. Agarwal P K, Somani R H, Weng W Q, et al. Shear-induced crystallization in novel long chain branched polypropylenes by in situ rheo-SAXS and -WAXD. Macromolecules, 2003, 36: 5226–5235

    Article  CAS  Google Scholar 

  8. Ye Z B, Zhu S P. Synthesis of branched polypropylene with isotactic backbone and atactic side chains by binary iron and zirconium single-site catalysts. J Polym Sci Part A, Polym Chem 2003, 41: 1152–1159

    Article  CAS  Google Scholar 

  9. Zeng W, Wang J J, Feng Z J, et al. Morphologies of long chain branched isotactic polypropylene crystallized from melt. Colloid Polym Sci 2005, 284: 322–326

    Article  CAS  Google Scholar 

  10. Munstedt H, Auhl D. Rheological measuring techniques and their relevance for the molecular characterization of polymers. J Nonnewtonian Flu Mech 2005, 128: 62–69

    Article  Google Scholar 

  11. Kurzbeck S, Oster F, Munstedt H, et al. Rheological properties of two polypropylenes with different molecular structure. J Rheol 1999, 43: 359–374

    Article  CAS  Google Scholar 

  12. Ye Z B, AlObaidi F, Zhu S P. Synthesis and rheological properties of long-chain-branched isotactic polypropylenes prepared by copolymerization of propylene and nonconjugated dienes. Ind & Eng Chem Res 2004, 43: 2860–2870

    Article  CAS  Google Scholar 

  13. Sugimoto M, Suzuki Y, Hyun K, et al. Melt rheology of long-chain-branched polypropylenes. Rheol Acta 2006, 46: 33–44

    Article  Google Scholar 

  14. Nam G J, Yoo J H, Lee J W. Effect of long-chain branches of polypropylene on rheological properties and foam-extrusion performances. J Appl Polym Sci 2005, 96: 1793–1800

    Article  CAS  Google Scholar 

  15. Avrami M. Kinetics of phase change. I general theory. J Chem Phys 1939, 7: 1103–1112

    Article  CAS  Google Scholar 

  16. Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys 1940, 8: 212–224

    Article  CAS  Google Scholar 

  17. Wuderlich B. Macromolecular Physics, Vol. 2. New York: Academic Press, 1976, Chapter 6

    Google Scholar 

  18. Jonsson H, Wallgren E, Hult A, et al. Kinetics of isotropic-smectic phase transition in liquid-crystalline polyethers. Macromolecules, 1990, 23: 1041–1047

    Article  CAS  Google Scholar 

  19. Jeziorny A. Parameters characterizing the kinetics of the nonisothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer, 1978, 19: 1142–1144

    Article  CAS  Google Scholar 

  20. Ozawa T. Kinetics of non-isothermal crystallization. Polymer, 1971, 12: 150–158.

    Article  CAS  Google Scholar 

  21. Liu T X, Mo Z S, Wang S E, et al. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 1997, 37: 568–575

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan ShouKe.

Additional information

Supported by the Outstanding Youth Fund and the National Natural Science Foundation of China (Grant Nos. 50521302, 20574079 and 20423003)

About this article

Cite this article

Zeng, W., Liu, J., Zhou, J. et al. A comparison study on the melt crystallization kinetics of long chain branched and linear isotactic polypropylenes. Chin. Sci. Bull. 53, 188–197 (2008). https://doi.org/10.1007/s11434-007-0491-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0491-7

Keywords

Navigation