Skip to main content
Log in

Morphology of polar ionospheric O+ ion upflow: FAST observations during quiet time

  • Articles
  • Geophysics
  • Published:
Chinese Science Bulletin

Abstract

With energetic ion measurements on FAST satellite, the morphologic features of quiet-time ionospheric O+ ion upflowing at altitudes of 2000 to 4000 km are drawn out for the first time. The pre-noon cusp/cleft is the predominant region of upflowing occurrence for O+ with lower energy. Meanwhile the pre-dawn sector near the equatorward edge of the plasma convection dominates the occurrence for the higher energy O+ ions. No matter whether the energy is lower or higher, the upflows occur often over a wide MLT range of lower latitudes outside the auroral oval. The upflowing within the pre-midnight (21:00–22:00 MLT) auroral oval carrys larger energy fluxes, with extremely large fluxes for higher energy O+ appearing near the polar cap boundary. For altitudes of 2000–4200 km under observation, the ion conics occur much more frequently than ion beams. Ion beams are rarely found below 3000 km, while the conics occur uniformly over the observed altitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shelley E G, Johnson R G, Sharp R D. Satellite observations of energetic heavy ions during a geomagnetic storm. J Geophys Res, 1972, 77: 6104–6110

    Google Scholar 

  2. Shelley E G. Heavy ions in the magnetosphere. Space Sci Rev, 1979, 23: 465–497

    Article  Google Scholar 

  3. Chappell C R, Giles B L, Moore T E, et al. The adequacy of the ionospheric source in supplying magnetospheric plama. J Atmos Terr Phys, 2000, 62: 421–436

    Article  Google Scholar 

  4. Yau A W. Sources of ion outflow in the high latitude ionosphere. Space Sci Rev, 1997, 80: 1–25

    Article  Google Scholar 

  5. Daglis I A. The role of magnetosphere-ionosphere coupling in magnetic storm dynamics. In: Tsurutani B T, Gonzalez W D, Kamide Y, et al. eds. Magnetic Storms, Geophysical Monograph 98-Magnetic storms. Washington, DC: AGU, 1997. 107–116

    Google Scholar 

  6. Klumpar D M, Transversely accelerated ions: an ionospheric source of hot magnetospheric ions. J Geophys Res, 1979, 84: 4229–4237

    Google Scholar 

  7. Gorney D J, Clarke A, Croley D, et al. The distribution of ion beams and conics below 8000 km. J Geophys Res, 1981, 86: 83–89

    Google Scholar 

  8. Yau A W, Beckwith P H, Peterson W K, et al. Long-term (solar-cycle) and seasonal variations of upflowing ionospheric ion events at DE-1 altitudes. J Geophys Res, 1985, 90: 6395–6407

    Google Scholar 

  9. Yau A W, Shelley E G, Peterson W K, et al. Energetic auroral and polar ion outflow at DE-1 altitudes: magnitude, composition, magnetic activity dependence and long-term variations. J Geophys Res, 1985, 90: 8417–8432

    Article  Google Scholar 

  10. Kondo T, Whalen B A, Yau A W, et al. Statistical analysis of up-flowing ion beams and conic distributions at DE-1 altitudes. J Geophys Res, 1990, 95: 12091–12102

    Google Scholar 

  11. Thelin B, Aparicio B, Lundin R. Observations of upflowing ionospheric ions in the mid-altitude cusp/cleft region with the Viking satellite. J Geophys Res, 1990, 95: 5931–5939

    Google Scholar 

  12. Fuselier S A, Ghielmetti A G, Moore T E, et al. Ion outflow observed by IMAGE: implications for source regions and heating mechanisms. Geophys Res Lett, 2001, 28: 1163–1166

    Article  Google Scholar 

  13. Pfaff R, Carlson C, Watzin J, et al. An overview of the fast auroral snapshot (FAST) satellite. Space Sci Rev, 2001, 98: 1–32

    Article  Google Scholar 

  14. Möbius E, Tang L, Kistler L M, et al. Species dependent energies in upward directed ion beams over auroral ares as observed with FAST TEAMS. Geophys Res Lett, 1998, 25: 2029–2032

    Article  Google Scholar 

  15. Lund E J, Möbius E, Klumpar D M, et al. Direct comparison of transverse ion acceleration mechanisms in the auroral region at solar minimum. J Geophys Res, 1999, 104: 22801–22805

    Article  Google Scholar 

  16. Strangeway R J, Ergun R E, Su Y-J, et al. Factors controlling ionospheric outflows as observed at intermediate altitudes, J Geophys Res, 2005, 110(A03221): doi: 10.1029/2004JA010829

  17. Wilson G R, Ober D M, Germany G A, et al. Nightside auroral zone and polar cap ion outflow as a function of substorm size and phase. J Geophys Res, 2004, 109(A02206): doi: 10.1029/2003JA009835

  18. Andersson L, Peterson W K, McBryde K M. Dynamic coordinates for auroral ion outflow. J Geophys Res, 2004, 109(A08201): doi: 10.1029/2004JA010424

  19. Andersson L, Peterson W K, McBryde K M. Estimates of the suprathermal O+ outflow characteristic energy and relative location in the auroral oval. Geophys Res Lett, 2005, 32(L09104): doi: 10.1029/2004GL021434

  20. McFadden J P, Carlson C W, Ergun R E, et al. Spatial structure and gradients of ion beams observed by FAST. Geophys Res Lett, 1998, 25: 2021–2024

    Article  Google Scholar 

  21. Klumpar D M, Möbius E, Kistler L M, et al. The time-of-flight energy, angle, mass spectrograph (TEAMS) experiment for FAST. Space Sci Rev, 2001, 98: 197–219

    Article  Google Scholar 

  22. Carlson C W, Pfaff R F, Watzin J G. The fast auroral snapshot (FAST) mission. Geophys Res Lett, 1998, 25: 2013–2016

    Article  Google Scholar 

  23. Tsyganenko N A. A model of the near magnetosphere with a dawn-dusk asymmetry: 1. Mathematical structure. J Geophys Res, 2002, 107(A8): doi: 10.1029/2001JA000219

  24. Tsyganenko N A. A model of the near magnetosphere with a dawn-dusk asymmetry: 2. Parameterization and fitting to observations. J Geophys Res, 2002, 107(A8): doi: 10.1029/2001JA000220

  25. Collin H L, Peterson W K, Lennartsson O W, et al. The seasonal variation of auroral ion beams. Geophys Res Lett, 1998, 25: 4071–4074

    Article  Google Scholar 

  26. Janhunen P, Olsson A, Peterson W K. The occurrence frequency of upward ion beams in the auroral zone as a function of altitude using Polar/TIMAS and DE-1/EICS data. Ann Geophysicae, 2003, 21: 2059–2072

    Google Scholar 

  27. Feldstein Y I, Isaev S I, Lebedinsky A I, The phenomenology and morphology of aurorae. Ann IQSY, 1969, 4: 311–348

    Google Scholar 

  28. Seo Y, Caton R, Horwitz J L. Statistical relationship between high-latitude ionospheric F-region/topside upflows and their drivers: DE-2 observations. J Geophys Res, 1997, 102: 7493–7500

    Article  Google Scholar 

  29. Liu C, Horwitz J L, Richards P G, Effects of convection ion heating and soft-electron precipitation on high-latitude F-region upflows. Geophys Res Lett, 1995, 22: 2713–2716

    Article  Google Scholar 

  30. Su Y-J, Caton R G, Horwitz J L, et al. Systematic modeling of soft-electron precipitation effect on high-latitude F region and topside ionospheric upflows. J Geophys Res, 1999, 104: 153–163

    Article  Google Scholar 

  31. Weimer D R. An improved model of ionospheric electric potentials including substorm perturbations and application to the Geospace Environment Modeling November 24, 1996 event. J Geophys Res, 2001, 106: 407–416

    Article  Google Scholar 

  32. Horwitz J L, Moore T E. Four contemporary issues concerning ionospheric plasma flow to the magnetosphere. Space Sci Rev, 1997, 80: 49–76

    Article  Google Scholar 

  33. Ma S Y, Liu H X, Schlegel K. A comparative study of magnetic storm effects on the ionosphere in the polar cap and auroral oval—F-region negative storm. Chin J Geophys (in Chinese), 2002, 45(2): 160–169

    Google Scholar 

  34. Liu H, Lu G. Velocity shear-related ion upflow in the low-altitude ionosphere. Ann Geophysicae, 2004, 22: 1149–1153

    Google Scholar 

  35. Ganguli G, Keskinen M J, Romero H, et al. Coupling of microprocesses and macroprocesses due to velocity shear: An application to the low-altitude ionosphere. Geophys Res Lett, 1986, 13: 893–896

    Google Scholar 

  36. Carpenter D, Lemaire J. The plasmasphere boundary layer. Ann Geophysicae, 2004, 22: 4291–4298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ma ShuYing.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 40390150)

About this article

Cite this article

Dang, G., Ma, S. & Zhou, Y. Morphology of polar ionospheric O+ ion upflow: FAST observations during quiet time. Chin. Sci. Bull. 52, 3403–3415 (2007). https://doi.org/10.1007/s11434-007-0444-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0444-1

Keywords

Navigation