Skip to main content
Log in

Interpretation and preliminary simulation of the 40 ka periodicity of the Quaternary glaciation

  • Articles
  • Geography
  • Published:
Chinese Science Bulletin

Abstract

More and more proxy records approved that the periodicity of the glacial cycles is about 40 ka before MPT (middle Pleistocene transition) as early as late Tertiary from 3.0 Ma to 0.9 Ma, whereas it changes to about 100 ka after MPT. Summer insolation at high latitude in Northern Hemisphere, usually considered as the main external force for the ice age, is dominated by the 23 ka precession period, which does not match the period of the glacial cycles. In this paper, we define an energy index C and its threshold Ct that indicate the net energy supply and the overall response of the climate system. The difference between these two parameters determines whether the ice sheet melts or not, and accordingly the start and termination of the interglacial stages, as well as the periodicity of glacial oscillations. Based on the energy threshold hypothesis, the preliminary simulation experiments are made to test the period of the glacial cycles and driven factors from a conceptual model. The results indicate that energy index C and threshold Ct can interpret not only the 40 ka periodicity before MPT, but also the quasi-100 ka periodicity after MPT to some extent, and the 40 ka is the basic period of the glacial cycles, which discloses the inherent continuity of climatic change before and after MPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agassiz L. Upon glaciers, moraines, and erratic blocks: Address delivered at the opening of the Helvetic Natural History Society at Neuchatel. New Philos J Edinburgh, 1838, 24: 864–883

    Google Scholar 

  2. Adhemar J A. Revolution de la mer. Paris: déluges périodiques, 1842

    Google Scholar 

  3. Croll J. Climate and Time in Their Geological Relations: A Theory of Secular Changes of the Earth’s Climate. New York: Appleton, 1875

    Google Scholar 

  4. Milankovitch M. Kanon der Erdbestrahlung und Seine Andwendung auf das Eiszeiten-problem. Belgrade: Royal Serbian Academy, 1941.132

    Google Scholar 

  5. Hays J D, Imbrie J, Shackleton N J. Variations in the Earth’s orbit: Pacemaker of the ice ages. Science, 1976, 194: 1121–1132

    Article  Google Scholar 

  6. Covey C. The earth’s orbit and the ice ages. Sci Am, 1990, 263: 58–66

    Google Scholar 

  7. Imbrie J. A good year for Milankovitch. Paleoceanography, 1992, 7: 687–690

    Google Scholar 

  8. Raymo M E, Nisancioglu K. The 41 kyr world: Milankovitch’s other unsolved mystery. Paleoceanography, 2003, 18, doi: 10.1029/2002PA000791

  9. Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 2005, 20, doi: 10.1029/2004PA001071

  10. Vimeux F, Masson V, Delaygue J, et al. A 420000 years deuterium excess record from East Antarctica Information on past changes in the origin of precipitation at Vostok. J Geophys Res, 2001, 106: 31863–31874

    Article  Google Scholar 

  11. Stenni B, Masson V, Cattani O, et al. A late-glacial high-resolution site and source temperature record derived from the EPICA Dome C isotope records (East Antarctica). Earth Planet Sci Lett, 2003, 217: 183–195

    Article  Google Scholar 

  12. Cortijo E, Lehman S, Keigwin L, et al. Changes in meridional temperature and salinity gradients in the North Atlantic Ocean (30° to 72°N) during the Last Interglacial period. Paleoceanography, 1999, 14: 23–33

    Article  Google Scholar 

  13. Liu Z H, Herbert D. High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch. Nature, 2004, 427: 720–723

    Article  Google Scholar 

  14. Loutre M F, Paillard D, Vimeux F, et al. Does mean annual insolation have the potential to change the climate. Earth Planet Sci Lett, 2004, 221: 1–14

    Article  Google Scholar 

  15. Nisancioglu K. Modeling the impact of atmospheric moisture transport on global ice volume. Dissertation for the Doctoral Degree. Cambridge: Massachusetts Institute of Technology, 2004. 1–154

    Google Scholar 

  16. Ding Zhongli. The Milankovitch Theory of Pleistocene Glacial Cycles: Challenges and Changes. Quat Sci (in Chinese), 2006, 26(5): 710–717

    Google Scholar 

  17. Paillard D. Glacial cycles: toward a new paradigm. Rev Geophys, 2001, 39: 325–346

    Article  Google Scholar 

  18. Hartmann D L, Global Physical Climatology. San Diego: Academic Press, 1994

    Google Scholar 

  19. Broecker W S. Terminations. In: Berger A, eds. Milankovitch and Climate, Part 2. Dordrecht: D Reidel Pub Co, 1984. 687–698

    Google Scholar 

  20. Imbrie J, Berger A, Boyle E A, et al. On the structure and origin of major glaciation cycles, 2, The 100000-year cycle. Paleoceanography, 1993, 8: 699–735

    Google Scholar 

  21. Berger W H, Wefer G. On the dynamics of the ice ages: Stage-11 paradox, mid-Brunhes climate shift and 100-ky cycle. In: Droxler A, Poore R, Burckle, L., eds. Earth’s Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question. Washington: American Geophysical Union, 2003. 41–59

    Google Scholar 

  22. Raymo M E. The timing of major climate terminations. Paleoceanography, 1997, 12: 577–585

    Article  Google Scholar 

  23. Calder N. Arithmetic of ice ages. Nature, 1974, 252: 216–218

    Article  Google Scholar 

  24. Imbrie J. A good year for Milankovitch. Paleoceanography, 1992, 7: 687–690

    Google Scholar 

  25. Le-Treut H, Ghil M. Orbital forcing, climatic interactions, and glaciations cycles. J Geophys Res, 1983, 88: 5167–5190

    Google Scholar 

  26. Saltzman B, Sutera A. A model of the internal feedback system involved in late Quaternary climatic variations. J Atmos Sci, 1984, 41: 736–745

    Article  Google Scholar 

  27. Tziperman E, Gildor H. On the mid-Pleistocene transition to 100-kyr glacial cycles and the asymmetry between glaciation and deglaciation times. Paleoceanography, 2003, 18, doi: 10.1029/2001PA000627

  28. Ashkenazy Y, Tziperman E. Are the 41kyr glacial oscillations a linear response to Milankovitch forcing. Quat Sci Rev, 2004, 23: 1879–1890

    Article  Google Scholar 

  29. Paillard D, Parrenin F. The Antarctic ice sheet and the triggering of deglaciations. Earth Planet Sci Lett, 2004, 227: 263–271

    Article  Google Scholar 

  30. Peter H. Early Pleistocene Glacial cycles and the integrated summer insolation forcing. Science, 2006, 313: 508–511

    Article  Google Scholar 

  31. Shackleton N J, Berger A, Peltier W R. An alternative astronomical calibration of the Lower Pleistocene timescale based on ODP Site 677. Transactions of the Royal Society of Edinburgh: Earth Science, 1990, 81: 251–261

    Google Scholar 

  32. Shackleton N J, Crowhurst S, Hagelberg T, et al. A new late Neogene time scale: Application to Leg 138 sites. Proc Ocean Drill Program Sci Results, 1995, 138: 73–101

    Google Scholar 

  33. Maslin M A, Haug G H, Sarnthein M, et al. Northwestern Pacific site 882: The initiation of Northern Hemisphere glaciation. Proc Ocean Drill Program Sci Results, 1995, 145: 315–329

    Google Scholar 

  34. Pisias N G, Moore T C. The evolution of Pleistocene climate: A time series approach. Earth Planet Sci Lett, 1981, 52: 450–458

    Article  Google Scholar 

  35. Ruddiman W F, Raymo M E, Martinson D G, et al. Pleistocene evolution: Northern Hemisphere ice sheets and North Atlantic Ocean. Paleoceanography, 1989, 4: 353–412

    Article  Google Scholar 

  36. Ruddiman W F, Raymo M, McIntyreb A. Matuyama 41,000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets. Earth Planet Sci Lett, 1986, 80: 117–129

    Article  Google Scholar 

  37. Shackleton N J. The 100000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science, 2000, 289: 1897–1902

    Article  Google Scholar 

  38. Hu Changhua, et al. Systems Analysis and Design Based on MATLAB Time-frequency Analysis (in Chinese). Xi’an: Xi’an Electronic Science and Technology University Press, 2002. 241

    Google Scholar 

  39. Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys, 2004, 428: 261–285

    Article  Google Scholar 

  40. Lin Z S, Wang S G. A study on the problem of 100ka cycles of astroclimatology. Chin J Geophys (in Chinese), 2004, 47(6): 971–975

    Google Scholar 

  41. Clark P U, Marshall S J, Clarke G K C, et al. Freshwater forcing of abrupt climate change during the last glaciation. Science, 2001, 293: 283–287

    Article  Google Scholar 

  42. Ganopolski A, Rahmstorf S. Rapid changes of glacial climate simulated in a coupled climate model. Nature, 2001, 409: 153–158

    Article  Google Scholar 

  43. Rayburn J A, Knuepfer P L K, Franzi D A. A series of large, Late Wisconsinan meltwater floods through the Champlain and Hudson Valleys, New York State, USA. Quat Sci Rev, 2005, 24: 2410–2419

    Article  Google Scholar 

  44. Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 1999, 399: 429–436

    Article  Google Scholar 

  45. Mix A C, Bard E, Schneider R. Environmental processes of the ice age: land oceans glaciers (EPILOG). Quat Sci Revi, 2001, 20: 627–657

    Article  Google Scholar 

  46. Parrenin F, Paillard D. Amplitude and phase of glacial cycles from a conceptual model. Earth Planet Sci Lett, 2003, 214: 243–250

    Article  Google Scholar 

  47. Paillard D. The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature, 1998, 391: 378–381

    Article  Google Scholar 

  48. Clark P U, Pollard D. Origin of the middle Pleistocene transition by ice sheet erosion of regolith. Paleoceanography, 1998, 13: 1–9

    Article  Google Scholar 

  49. Roy M, Clark P U, Raisbeck G M, et al. Geochemical constraints on the regolith hypothesis for the middle Pleistocene transition. Earth Planet Sci Lett, 2004, 227: 281–296

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Xing.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 40475035) and the National Basic Research Program of China (Grant No. 2006CB400500)

About this article

Cite this article

Li, N., Chen, X. Interpretation and preliminary simulation of the 40 ka periodicity of the Quaternary glaciation. CHINESE SCI BULL 52, 2275–2284 (2007). https://doi.org/10.1007/s11434-007-0318-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0318-6

Keywords

Navigation