Skip to main content
Log in

Functional analysis of schistosomes EF-hand domain-containing tegument proteins

  • Articles
  • Bioinformatics
  • Published:
Chinese Science Bulletin

Abstract

Schistosomes cause schistosomiasis disease which severely threatens human health. Little is known about the functions of EF-hand domain containing schistosomes tegument proteins other than as antigens. More possible functions of these tegument proteins were investigated with in silico analyses including protein-protein functional interaction, site-specific variation and glycosylation modification. The analysis results suggested that schistosomes could actively modulate host immune responses for its own favor through functional interactions with host proteins with immunomodulatory function, and passively regulate host immune responses through sequence variation under positive selection and glycosylating the recognition sites of host immune attack. In addition, the analysis of the C-terminal domain of these tegument proteins indicated that they could assist schistosomes in escaping host immune attacks through inhibiting chemotaxis and non-complement fixing antibody (IgG4) responses. In summary, our results suggested that these tegument antigen proteins could assist schistosomes in escaping and modulating host immune responses for self-protection during the process of host-parasite interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Engels D, Chitsulo L, Montresor A, et al. The global epidemiological situation of schistosomiasis and new approaches to control and research. Acta Trop, 2002, 82(2): 139–146

    Article  Google Scholar 

  2. McLaren D J, Hockley D J. Blood flukes have a double outer membrane. Nature, 1977, 269(5624): 147–149

    Article  Google Scholar 

  3. Van IIellemond J J, Retra K, Brouwers J F, et al. Functions of the tegument of schistosomes: Clues from the proteome and lipidome. Int J Parasitol, 2006, 36(6): 691–699

    Article  Google Scholar 

  4. Braschi S, Curwen R S, Ashton P D, et al. The tegument surface membranes of the human blood parasite Schistosoma mansoni: A protcomic analysis after differential extraction. Protcomics, 2006, 6(5): 1471–1482

    Article  Google Scholar 

  5. Perez-Sanchez R, Ramajo-Hermandez A, Ramajo-Martin V, et al. Proteomic analysis of the tegument and excretory-secretory products of adult Schistosoma bovis worms. Protcomics, 2006, 6(Suppl 1): S226–S236

    Article  Google Scholar 

  6. Mohamed M M, Shalaby K A, LoVerde P T, et al. Characterization of Sm20.8, a member of a family of schistosome legumental antigens. Mol Biochem Parasitol, 1998, 96(1–2): 15–25

    Article  Google Scholar 

  7. Taylor D A, Sack J S, Maune J F, et al. Structure of a recombinant calmodulin from Drosophila melanogaster refined at 2.2-A resolution. J Biol Chem, 1991, 266(32): 21375–21380

    Google Scholar 

  8. Kuo H J, Tran N T, Clary S A, et al. Characterization of EHD4, an EH domain-containing protein expressed in the extracellular matrix. J Biol Chem, 2001, 276(46): 43103–43110

    Article  Google Scholar 

  9. Hafalla J C, Alamares J G, 2nd, Acosta L P, et al. Molecular identification of a 21.7 kDa schistosoma japonicum antigen as a target of the human IgE response. Mol Biochem Parasitol, 1999, 98(1): 157–161

    Article  Google Scholar 

  10. Santiago M L, Hafalla J C, Kurtis J D, et al. Identification of the Schistosoma japonicum 22.6-kDa antigen as a major target of the human IgE response: Similarity of IgE-binding epitopes to allergen peptides. Int Arch Allergy Immunol, 1998, 117(2):94–104

    Article  Google Scholar 

  11. Fitzsimmons C M, Stewart T J, Hoffmann K F, et al. Human IgE response to the Schistosoma haematobium 22.6 kDa antigen. Parasite Immunol, 2004, 26(8–9): 371–376

    Article  Google Scholar 

  12. Ruiz de Eguino A D, Mafchin A, Casais R, et al. Cloning and expression in Escherichia coli of a Fasciola hepatica gene encoding a calcium-binding protein. Mol Biochem Parasitol, 1999, 101(1–2): 13–21

    Article  Google Scholar 

  13. Vichasri-Grams S, Subpipattana P, Sobhon P, et al. An analysis of the calcium-binding protein 1 of Fasciola gigantica with a comparison to its homologs in the phylum Platyhelminthes. Mol Biochem Parasitol, 2006, 146(1): 10–23

    Article  Google Scholar 

  14. Francis P, Bickle Q. Cloning of a 21.7-kDa vaccine-dominant antigen gene of Schistosoma mansoni reveals an EF hand-like motif. Mol Biochem Parasitol, 1992, 50(2): 215–224

    Article  Google Scholar 

  15. Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform, 2004, 5(2): 150–163

    Article  Google Scholar 

  16. Yang Z. PAML: A program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci, 1997, 13(5): 555–556

    Google Scholar 

  17. Krogh A, Larsson B, von Heijne G, et al. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol, 2001, 305(3): 567–580

    Article  Google Scholar 

  18. Bendtsen J D, Nielsen II, von IIeijne G, et al. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol, 2004, 340(4): 783–795

    Article  Google Scholar 

  19. Youssef P, Roth J, Frosch M, et al. Expression of myeloid related proteins (MRP) 8 and 14 and the MRP8/14 heterodimer in rheumatoid arthritis synovial membrane. J Rheumatol, 1999, 26(12): 2523–2528

    Google Scholar 

  20. Marti T, Erttmann K D, Gallin M Y. Host-parasite interaction in human onchocerciasis: Identification and sequence analysis of a novel human calgranulin. Biochem Biophys Res Commun, 1996, 221(2): 454–458

    Article  Google Scholar 

  21. Kissinger C R, Parge II E, Knighton D R, et al. Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex. Nature, 1995, 378(6557): 641–644

    Article  Google Scholar 

  22. Elshorst B, Hennig M, Forsterling H, et al. NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+ pump. Biochemistry, 1999, 38(38): 12320–12332

    Article  Google Scholar 

  23. Liu F, Lu J, Hu W, et al. New perspectives on host-parasitc interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum. PLoS Pathog, 2006, 2(4): c29

    Article  Google Scholar 

  24. Vassylyev D G, Takeda S, Wakatsuki S, et al. Crystal structure of troponin C in complex with troponin I fragment at 2.3-A resolution. Proc Natl Acad Sci USA. 1998, 95(9): 4847–4852

    Article  Google Scholar 

  25. Ortona E, Margutti P, Delunardo F, et al. Screening of an Echinococcus granulosus cDNA library with IgG4 from patients with cystic echinococcosis identifies a new tegumental protein involved in the immune escape. Clin Exp Immunol, 2005, 142(3): 528–538

    Google Scholar 

  26. Velupillai P, dos Reis E A, dos Reis M G, et al. Lewis(x)-containing oligosaccharide attenuates schistosome egg antigen-induced immune depression in human schistosomiasis. Hum Immunol, 2000, 61(3): 225–232

    Article  Google Scholar 

  27. Simpson A J. Tegumental proteins of Schistosoma mansoni: Complex biomolecules and potent antigens. Mem Inst Oswaldo Cruz, 1992, 87(Suppl 4): 11–17

    Google Scholar 

  28. Tomescu C, Law W K, Kedes D II. Surface downregulation of major histocompatibility complex class I, PE-CAM, and ICAM-1 following de novo infection of endothelial cells with Kaposi’s sarcoma-associated herpesvirus. J Virol, 2003, 77(17): 9669–9684

    Article  Google Scholar 

  29. Forsberg R, Christiansen F B. A codon-based model of host-specific selection in parasites, with an application to the influenza A virus. Mol Biol Evol, 2003, 20(8): 1252–1259

    Article  Google Scholar 

  30. Gupta R, Jung E, Gooley A A, et al. Scanning the available Dictyostelium discoideum proteome for O-linked GlcNAc glycosylation sites using ncural networks. Glycobiology, 1999, 9(10): 1009–1022

    Article  Google Scholar 

  31. Maurer-Stroh S, Gouda M, Novatchkova M, et al. MYRbase: Analysis of genomc-wide glycine myristoylation enlarges the functional spectrum of eukaryotic myristoylated proteins. Genome Biol, 2004, 5(3): R21

    Article  Google Scholar 

  32. Hayashi N, Matsubara M, Jinbo Y, et al. Nef of HIV-1 interacts directly with calcium-bound calmodulin. Protein Sci, 2002, 11(3): 529–537

    Article  Google Scholar 

  33. Hayashi N, Izumi Y, Titani K, et al. The binding of myristoylated N-terminal nonapeptide from neuro-specific protein CAP-23/NAP-22 to calmodulin does not induce the globular structure observed for the calmodulin-nonmyristylated peptide complex. Protein Sci, 2000, 9(10): 1905–1913

    Article  Google Scholar 

  34. Qian Z L, Deelder A M. Schistosoma japonicum: Immunological characterization and detection of circulating polysaccharide antigens from adult worms. Exp Parasitol, 1983, 55(2): 168–178

    Article  Google Scholar 

  35. van Lieshout L, Polderman A M, Deelder A M. Immunodiagnosis of schistosomiasis by determination of the circulating antigens CAA and CCA, in particular in individuals with recent or light infections. Acta Trop, 2000, 77(1): 69–80

    Article  Google Scholar 

  36. Goldring O L, Clegg J A, Smithers S R, et al. Acquisition of human blood group antigens by Schistosoma mansoni, Clin Exp Immunol, 1976, 26(1): 181–187

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li YuanYuan or Li YiXue.

About this article

Cite this article

Yu, F., Kang, B., Li, Y. et al. Functional analysis of schistosomes EF-hand domain-containing tegument proteins. CHINESE SCI BULL 52, 2100–2107 (2007). https://doi.org/10.1007/s11434-007-0312-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0312-z

Keywords

Navigation