Skip to main content
Log in

Efficient photo-assisted Fenton oxidation treatment of multi-walled carbon nanotubes

  • Articles
  • Materials Chemistry
  • Published:
Chinese Science Bulletin

Abstract

In this paper, a new and efficient way to oxidize and functionalize the multi-walled carbon nanotubes (MWNTs) has been developed by using a combination of ultraviolet (UV) irradiation and Fenton oxidation process, namely UV/Fenton oxidation treatment. Comparing with conventionally individual Fenton oxidation treatment of MWNTs, UV/Fenton combined treatment improved the etching rates and efficiencies and hence reduced the time for surface modification of MWNTs, which was proved to be an effective method in etching and functionalizing CNTs. The formation of new functional groups, structural changes and thermal stability during oxidation period were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and could be clarified by thermogravimetric analysis (TGA), which showed that it was under UV irradiation conditions that MWNTs could be rapidly functionalized with hydroxyl, carbonyl and carboxyl groups in the presence of Fenton reagents, originating from the increase in the gross HO· concentration and the existent synergetic effect when using UV irradiation combing with Fenton oxidation process. Introduction of such new oxygen-containing functional groups was attributed to attacks of HO· on defect sites and unsaturated bonds of C=C in the MWNTs sample, which should play an important role in accounting for the FTIR and Raman spectral changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baughman R H, Zakhidov A A, De Heer W A, et al. Carbon nanotubes-the route toward applications. Science, 2002, 297(5582): 787–792

    Article  Google Scholar 

  2. Bianco A, Kostarelos K, Partidos C D, et al. Biomedical applications of functionalized carbon nanotubes. Chem Commun, 2005, 5: 571–577

    Article  Google Scholar 

  3. Bekyarova E, Ni Y, Malarkey E B, et al. Applications of carbon nanotubes in biotechnology and biomedicine. J Biomed Nanotechnol, 2005, 1(1): 3–17

    Article  Google Scholar 

  4. Tang B Z, Xu H. Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromolecules, 1999, 32(8): 2569–2576

    Article  Google Scholar 

  5. Islam M F, Rojas E, Bergey D M, et al. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett, 2003, 3(2): 269–273

    Article  Google Scholar 

  6. Moore V C, Strano M S, Haroz E H, et al. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett, 2003, 3(10): 1379–1382

    Article  Google Scholar 

  7. Petrov P, Stassin F, Pagnoulle C, et al. Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers. Chem Commun, 2003, 23: 2904–2905

    Article  Google Scholar 

  8. Shvartzman-Cohen R, Nativ-Roth E, Yerushalmi-Rozen R, et al. Selective dispersion of single-walled carbon nanotubes in the presence of polymers: the role of molecular and colloidal length scales. J Am Chem Soc, 2004, 126(45): 14850–14857

    Article  Google Scholar 

  9. Sinani V A, Kotov N A, Yaroslavov A A, et al. Aqueous dispersions of single-wall and multi-wall carbon nanotubes with designed amphiphilic polycations. J Am Chem Soc, 2005, 127(10): 3463–3472

    Article  Google Scholar 

  10. Tagmatarchis N, Prato M. Functionalization of carbon nanotubes via 1,3-dipolar cycloadditions. J Mater Chem, 2004, 14(4): 437–440

    Article  Google Scholar 

  11. Hirsch A. Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed, 2002, 41(11): 1853–1859

    Article  Google Scholar 

  12. Georgakilas V, Kordatos K, Prato M, et al. Organic functionalization of carbon nanotubes. J Am Chem Soc, 2002, 124(5): 760–761

    Article  Google Scholar 

  13. Pekke S, Salvetat J P, Jakab E, et al. Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J Phys Chem B, 2001, 105(33): 7938–7943

    Article  Google Scholar 

  14. Holzinger M, Vostrowsky O, Hirsch A, et al. Sidewall functionalization of carbon nanotubes. Angew Chem Int Ed, 2001, 40(21): 4002–4005

    Article  Google Scholar 

  15. Rao C N R, Govindaraj A, Satishkumar B C, et al. Functionalized carbon nanotubes from solution, Chem Commun, 1996, 13: 1525–1526

    Article  Google Scholar 

  16. Kuznetsova A, Popova I, Yates J T, et al. Oxygen-containing functional groups on singlewall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. J Am Chem Soc, 2001, 123(43): 10699–10704

    Article  Google Scholar 

  17. Yu Z, Brus L E. Reversible oxidation effect in Raman scattering from metallic single-wall carbon nanotubes. J Phys Chem A, 2000, 104(47): 10995–10999

    Article  Google Scholar 

  18. Mawhinney D B, Naumenko V, Kuznetsova A, et al. Surface defect site density on single walled carbon nanotubes by titration. Chem Phys Lett, 2000, 324(1–3): 213–216

    Article  Google Scholar 

  19. Cai L T, Bahr J L, Yao Y X, et al. Ozonation of single-walled carbon nanotubes and their assemblies on rigid self-assembled monolayers. Chem Mater, 2002, 14(10): 4235–4241

    Article  Google Scholar 

  20. Pan H L, Liu L Q, Guo Z X. Carbon nanotubes from mechanochemical reaction. Nano Lett, 2003, 3(1): 29–32

    Article  Google Scholar 

  21. Mickelson E T, Huffman C B, Rinzler A G. Fluorination of single wall carbon nanotubes. Chem Phys Lett, 1998, 296(1–2): 188–194

    Article  Google Scholar 

  22. Kelly K F, Chiang I W, Mickelson E T. Insight into the mechanism of sidewall functionalization of single-walled nanotubes: an STM study Chem Phys Lett, 1999, 313(3–4): 445–450

    Article  Google Scholar 

  23. Wu C D, Liu X H, Wang D B. Photosonochemical degradation of phenol in water. Wat Res, 2001, 35(16): 3927–3933

    Article  Google Scholar 

  24. Shemer H, Kunukcu Y K, Linden K G. Degradation of the pharmaceutical metronidazole via UV, Fenton and photo-Fenton processes. Chemosphere, 2006, 63(2): 269–276

    Article  Google Scholar 

  25. Gogate P R, Pandit A B. A review of imperative technologies for wastewater treatment II: hybrid methods. Adv Environ Res, 2004, 8(3–4): 553–597

    Article  Google Scholar 

  26. Grujicic M, Cao G, Rao A M, et al. UV-light enhanced oxidation of carbon nanotubes. Appl Surf Sci, 2003, 214(1–4): 289–303

    Article  Google Scholar 

  27. Valentini L, Armentano I, Kenny J M, et al. Interaction of oxygen with nanocomposites made of n-type conducting polymers and carbon nanotubes: role of charge transfer complex formation between nanotubes and poly(3-octylthiophene). Thin Solid Films, 2005, 476(1): 162–167

    Article  Google Scholar 

  28. Savage T, Bhattacharya S, Sadanadan B, et al. Photoinduced oxidation of carbon nanotubes. J Phys: Condens Matter, 2003, 15(35): 5915–5921

    Article  Google Scholar 

  29. Asano K, Kondo D, Kawabata A, et al. Chemical modification of multi-walled carbon nanotubes by vacuum ultraviolet irradiation dry process. Jpn J Appl Phys Part 1, 2006, 45(4B): 3573–3576

    Article  Google Scholar 

  30. Simmons J M, Nichols B M, Baker, S E, et al. Effect of ozone oxidation on the single-walled carbon nanotubes. J Phys Chem B, 2006, 110(14): 7113–7118

    Article  Google Scholar 

  31. Sham M L, Kim J K. Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments. Carbon, 2006, 44(4): 768–777

    Article  Google Scholar 

  32. Li W, Bai Y, Zhang Y K, et al. Effect of hydroxyl radical on the structure of multi-walled carbon nanotubes. Synth Met, 2005, 155(3): 509–515

    Article  Google Scholar 

  33. Rodgers J D, Bunce N J. Treatment methods for the remediation of nitroaromatic explosives. Water Res, 2001, 35(9): 2101–2111

    Article  Google Scholar 

  34. Arepalli S, Nikolaev P, Gorelik O. Protocol for the characterization of single-wall carbon nanotube material quality. Carbon, 2004, 42(8–9): 1783–1791

    Article  Google Scholar 

  35. Chen X H, Chen C S, Chen Q, et al. Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD. Mat Lett, 2002, 57(3): 734–738

    Article  Google Scholar 

  36. Chen C M, Chen M, Leu F C. Purification of multi-walled carbon nanotubes by microwave digestion method. Diam Relat Mater, 2004, 13(4–8): 1182–1186

    Article  Google Scholar 

  37. Knight D S, White W B. Characterization of diamond films by Raman spectroscopy. J Mater Res, 1989, 4(2): 385–393

    Google Scholar 

  38. Kastner J, Pichler T, KuZmany H, et al. Resonance Raman and infrared spectroscopy of carbon nanotubes. Chem Phys Lett, 1994, 221(1–2): 53–58

    Article  Google Scholar 

  39. Douglas B M, Naumenko V, Kuznetsova A Infrared spectral evidence for the etching of carbon nanotubes: Ozone oxidation at 298 K. J Am Chem Soc, 2000, 122(10): 2383–2384

    Article  Google Scholar 

  40. Zhang J, Zou H L, Qing Q. Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B, 2003, 107(36): 3712–3718

    Article  Google Scholar 

  41. Peng Y, Liu H W. Effect of oxidation by hydrogen peroxide on the structures of multi-walled carbon nanotubes. Ind Eng Chem Res, 2006, 45(19): 6483–6488

    Article  Google Scholar 

  42. Tan P H, Zhang S L, Yue K T, et al. Comparative Raman study of carbon nanotubes prepared by D.C. Arc Discharge and catalytic methods. J Raman Spectrosc, 1997, 28(5): 369–372

    Article  Google Scholar 

  43. Pimenta M A, Jorio A, Brown S D M. Diameter dependence of the Raman D-band in isolated single-wall carbon nanotubes. Phys Rev B, 2001, 64(4): 041401–041404

    Article  Google Scholar 

  44. Itkis M E, Perea D E, Jung R, et al. Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes. J Am Chem Soc, 2005, 127(10): 3439–3448

    Article  Google Scholar 

  45. Glaze W H, Kang J W. Advanced oxidation processes for treating groundwater contaminated with TCE and PCE: laboratory studies. J Am Water Works Assoc, 1988, 80(5): 57–63

    Google Scholar 

  46. Hong A, Zappi M E, Kuo C H, et al. Modeling the kinetics of illuminated and dark advanced oxidation processes. ASCE J Environ Eng, 1996, 122(1): 58–62

    Article  Google Scholar 

  47. Cadot C, Dalko P I, Cossy J. Free-radical hydroxylation reactions of alkylboronates. J Org Chem, 2002, 67(21): 7193–7202

    Article  Google Scholar 

  48. Vieira A J S C, Steenken S. Pattern of hydroxyl radical reaction with N6,N6,9-trimethyladenine: dehydroxylation and ring opening of isomeric hydroxyl adducts. J Phys Chem, 1991, 95(23): 9340–9346

    Article  Google Scholar 

  49. Krauss M, Osman R. Electronic spectra of the neutral radical and H and OH adducts of uracil. J Phys Chem, 1993, 97(51): 13515

    Article  Google Scholar 

  50. Sun T, Jia Z S, Xu Z D. Different hydroxyl radical scavenging activity of water-soluble β-alanine C[60] adducts. Bioorg Med Chem Lett, 2004, 14(7): 1779–1781

    Article  Google Scholar 

  51. Zhang Z, Xiang Q, Glatt H, et al. Studies on pathways of ring opening of benzene in a Fenton system. Free Radic Biol Med, 1995, 18(3): 411–419

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wei.

Additional information

Supported by Shanghai Nanotechnology Promotion Center (Grant No. 0252nm011) and Doctoral R&D Fund of Henan Agricultural University (Grant No. 30200212)

About this article

Cite this article

Fan, C., Li, W., Li, X. et al. Efficient photo-assisted Fenton oxidation treatment of multi-walled carbon nanotubes. CHINESE SCI BULL 52, 2054–2062 (2007). https://doi.org/10.1007/s11434-007-0308-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0308-8

Keywords

Navigation