Skip to main content
Log in

A novel salicylaldehyde dehydrogenase-NahV involved in catabolism of naphthalene from Pseudomonas putida ND6

  • Articles
  • Microbiology
  • Published:
Chinese Science Bulletin

Abstract

A novel salicylaldehyde dehydrogenase involved in catabolism of naphthalene from Pseudomonas putida ND6, NahV, has been identified. NahV exhibited lower identity in amino acid sequence with the classic salicylaldehyde dehydrogenase, NahF, from P. putida ND6. This is the first report of an isofunctional enzyme of bacterial salicylaldehyde dehydrogenase. Comparison of K m and V max values of NahV and NahF demonstrated that NahF has a more efficient catalytic reaction than NahV, while NahV has much higher affinity for salicylaldehyde and NAD+. Both enzymes exhibited broad substrate specificities and catalyzed the oxidation of salicylaldehyde, 5-chlorosalicylaldehyde, formaldehyde, m-nitrobenzaldehyde, o-nitrobenzaldehyde, o-methoxybenxaldehyde, glutaraldehyde, caprylic aldehyde, and glyoxal. However, the relative rates at which the substituted analogs are transformed differ considerably. NahV activity could be enhanced by Fe2+, Cu2+ and Zn2+; whereas NahF activity could only be stimulated by Fe2+. NahF is more stable than NahV at elevated temperatures. Dot-blot hybridization analyses showed that nahF-like genes occurred in all naphthalene-degradation bacteria isolated in this study, whereas nahV-like genes were present in only some naphthalene-degrading bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yen K M, Gunsalus I C. Regulation of naphthalene catabolic genes of plasmid NAH7. J Bacteriol, 1985, 162: 1008–1013

    Google Scholar 

  2. Yen K M, Serdar C M. Genetics of naphthalene catabolism in Pseudomonas. CRC Crit Rev, Microbiol, 1988, 15: 247–268

    Article  Google Scholar 

  3. Serdar C M, Gibson D T. Studies of nucleotide sequence homology between naphthalene-utilizing strains of bacteria. Biochem Biophys Res Commun, 1989, 164: 772–779

    Article  Google Scholar 

  4. Rosselló-Mora R A, Lalucat J, García-Valdés E. Comparative biochemical and genetic analysis of naphthalene degradation Pseudomonas stutzeri strains. Appl Environ Microbiol, 1994, 60: 966–972

    Google Scholar 

  5. Bosch R, Garcia-Valdes E, Moore E R. Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10. Gene, 1999, 236: 149–157

    Article  Google Scholar 

  6. Bosch R, Garcia-Valdes E, Moore E R. Complete sequence and evolutionary significance of a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzeri AN10. Gene, 2000, 245: 65–74

    Article  Google Scholar 

  7. Li W, Shi J D, Wang X G, et al. Complete nucleotide sequence and organization of the naphthalene catabolic plasmid pND6-1 from Pseudomonas sp. strain ND6. Gene, 2004, 336: 231–240

    Article  Google Scholar 

  8. Dennis J J, Zylstra G J. Complete sequence and genetic organization of pDTG1, the 83 kilobase naphthalene degradation plasmid from Pseudomonas putida strain NCIB 9816-4. J Mol Biol, 2004, 341: 753–768

    Article  Google Scholar 

  9. Sota M, Yano H, Ono A, et al. Genomic and functional analysis of the IncP-9 naphthalene-catabolic plasmid NAH7 and its transposon Tn4655 suggests catabolic gene spread by a tyrosine recombinase. J Bacteriol, 2006, 188: 4057–4067

    Article  Google Scholar 

  10. You I S, Murray R I, Jollic D, et al. Purification and characterization of salicylate hydroxylase from Pseudomonas putida PpG7. Biochem Biophys Res Commun, 1990, 169: 1049–1054

    Article  Google Scholar 

  11. Bosch R, Moore E R, Garcia-Valdes E, et al. NahW, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10. J Bacteriol, 1999, 181: 2315–2322

    Google Scholar 

  12. Zhao H B, Chen D F, Li Y J, et al. Overexpression, purification and characterization of a new salicylate hydroxylase from naphthalene-degrading Pseudomonas sp. strain ND6. Microbiol Res, 2005, 160: 307–313

    Article  Google Scholar 

  13. Jeon C O, Park M, Ro H S, et al. The naphthalene catabolic (nag) genes of Polaromonas naphthalenivorans CJ2: Evolutionary implications for two gene clusters and novel regulatory control. Appl Environ Microbiol, 2006, 72: 1086–1095

    Article  Google Scholar 

  14. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248–254

    Article  Google Scholar 

  15. Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed. New York: Cold Spring Harbor Press, 1989

    Google Scholar 

  16. Ausubel F M, Brent R, Kingston R E, et al. Current Protocols in Molecular Biology. New York: Wiley, 1989

    Google Scholar 

  17. Georgiou G, Valaxt P. Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol, 1996, 7: 190–197

    Article  Google Scholar 

  18. Negoro S. Biodegradation of nylon oligomers. Appl Microbiol Biotechnol, 2000, 54: 461–466

    Article  Google Scholar 

  19. Laemmli C M, Leveau J H J, Zehnder A J B, et al. Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4). J Bacteriol, 2000, 182: 4165–4172

    Article  Google Scholar 

  20. Roth J R, Benson N, Galitski T, et al. Rearrangements of the bacterial chromosome: Formation and applications. In: Neidhardt F C, Curtiss III R, Ingrham J L, eds. Escherichia coli and Salmonella: Cellular and Molecular Biology. Washington: ASM Press, 1996. 2256–2276

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai BaoLi.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 30270274) and Postdoctoral Science Foundation of China (Grant No. 2005038461)

About this article

Cite this article

Zhao, H., Li, Y., Chen, W. et al. A novel salicylaldehyde dehydrogenase-NahV involved in catabolism of naphthalene from Pseudomonas putida ND6. Chin. Sci. Bull. 52, 1942–1948 (2007). https://doi.org/10.1007/s11434-007-0296-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0296-8

Keywords

Navigation