Skip to main content
Log in

Detection of methane plumes in the water column of Logatchev hydrothermal vent field, Mid-Atlantic Ridge

  • Articles
  • Oceanology
  • Published:
Chinese Science Bulletin

Abstract

During DY105-17 cruise onboard the R/V “Da Yang Yi Hao” in 2005, methane concentrations in the water column above Logachev hydrothermal vent field were measured by applying stripping/trapping-gas chromatographic (GC) and the distinct methane plumes were detected. Results show that the background methane concentration within the Logachev area is from 1.05 nmol/L to 1.68 nmol/L, significantly higher than the background level of the Atlantic abyssal plain of 0.4–0.5 nmol/L, suggesting that hydrothermal venting is a major source of dissolved methane to the ocean. The highest anomalies of methane concentrations in the water column range from 7.14 nmol/L to 113.9 nmol/L and occur just at 180–500 m above the seafloor. The distribution of methane concentration and the structural characteristics of hydrothermal plumes are strongly influenced by the supply of underlying hydrothermal fluids, the mixing process of ocean bottom currents and the microbial oxidation. Furthermore, the differences in distribution of methane plume between the station MAR-CTD3 and the other stations indicate a probable unknown hydrothermal vent site nearby. There occurs high concentration of methane along with temperature and nephelometry anomalies, which strongly confirms that the subtle measurement of methane concentration in water column is one of the effective ways to locate active sites of hydrothermal venting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ernst G G J, Cave R R, German C R, et al. Vertical and lateral splitting of a hydrothermal plume at Steinahóll. Reykjanes Ridge, Iceland. Earth Planet Sci Lett, 2000, 179(3–4): 529–537

    Article  Google Scholar 

  2. Lupton J E. Hydrothermal plumes: Near and far field. In: Humphris S. et al., ed. Physical, Chemical, Biological, and Geological Interactions within Hydrothermal Systems. Geophysical Monograph. 91, American Geophysical Union, 1995, 317–346

  3. Ishibashi J, Wakita H, Okamura K, et al. Hydrothermal methane and manganese variation in the plume over the superfast-spreading southern East Pacific Rise. Geochm Cosmoch Acta, 1997, 61(3): 485–500

    Article  Google Scholar 

  4. Chin C S, Klinkhammer G P, Wilson C. Detection of hydrothermal plumes on the northern Mid-Atlantic Ridge: results from optical measurements. Earth Planet Sci Lett, 1998, 162:1–13

    Article  Google Scholar 

  5. Stüben D, Stoffers P, Cheminée J, et al. Manganese, methane, iron, zinc, and nickel anomalies in hydrothermal plumes from Teahitia and Macdonald volcanoes. Geochim Cosmochim Acta, 1992, 56(10): 3693–3704

    Article  Google Scholar 

  6. Mottl M J, Sansone F J, Wheat C G, et al. Manganese and methane in hydrothermal plumes along the East Pacific Rise, 8°40′ to 11°50′N. Geochim Cosmochim Acta, 1995, 59(20): 4147–4165

    Article  Google Scholar 

  7. Charlou J L, Donval J P. Hydrothermal methane venting between 12°N and 26°N along the Mid-Atlantic Ridge. J Geophys Res, 1993, 98(B6): 9625–9642

    Google Scholar 

  8. Resing J A, Lupton J E, Feely R A, et al. CO2 and 3He in hydrothermal plumes: implications for mid-ocean ridge CO2 flux. Earth Planet Sci Lett, 2004, 226: 449–464

    Article  Google Scholar 

  9. Kelley D S, Lilley M D, Lupton J E, et al. Enriched H2, CH4, and 3He concentrations in hydrothermal plumes associated with the 1996 Gorda Ridge eruptive event. Deep-Sea Res II, 1998, 45: 2665–2682

    Article  Google Scholar 

  10. Tsunogai U, Yoshida N, Ishibashi J, et al. Carbon isotopic distribution of methane in deep-sea hydrothermal plume, Myojin Knoll Caldera, Izu-Bonin arc: implications for microbial methane oxidation in the oceans and applications to heat flux estimation. Geochim Cosmochim Acta, 2000, 64(14): 2439–2452

    Article  Google Scholar 

  11. de Angelis M A, Lilley M D, Baross J A. Methane oxidation in deep-sea hydrothermal plumes of the endeavour segment of the Juan de Fuca Ridge. Deep Sea Research Part I. 1993, 40(6): 1169–1186

    Article  Google Scholar 

  12. Tsunogai U, Nakagawa F, Gamo T, et al. Stable isotopic compositions of methane and carbon monoxide in the Suiyo hydrothermal plume, Izu-Bonin arc: Tracers for microbial consumption/production. Earth Planet Sci Lett, 2005, 237(3–4): 326–340

    Article  Google Scholar 

  13. Cowen J P, Wen X, Popp B N. Methane in aging hydrothermal plumes. Geochim Cosmochim Acta, 2002, 66(20): 3563–3571

    Article  Google Scholar 

  14. Sudarikov S M, Roumiantsev A B. Structure of hydrothermal plumes at the Logatchev vent field, 14°45′N, Mid-Atlantic Ridge: evidence from geochemical and geophysical data. J Volcanol Geotherm Res, 2000, 101: 245–252

    Article  Google Scholar 

  15. Charlou J L, Donval J P, Fouquet Y, et al. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chem. Geol, 2002, 191: 345–359

    Article  Google Scholar 

  16. Kuhn T. Mineralogical, geochemical and biological investigations of hydrothermal systems on the Mid-Atlantic Ridge between 14°45′N and 15°05′N (HYDROMAR I). Meteor Berichte 03-04, Mid-Atlantic Expedition 2004, Cruise No. 60, Leg 3, Leitstelle Meteor, Institut für Meereskunde der Universität Hamburg, 2004

  17. Wilson C, Charlous J L, Ludford E, et al. Hydrothermal an omalies in the Lucky Strike segment on the Mid-Atlantic Ridge (37°17′N). Earth Planet Sci Lett, 1996, 142: 467–477

    Article  Google Scholar 

  18. Allen D E, Seyfried W E Jr. Serpentinization and heat generation: Constraints from Lost City and Rainbow hydrothermal systems. Geochim Cosmochim Acta, 2004, 68(6): 1347–1354

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou HuaiYang.

Additional information

Supported by Key Project of the National Natural Science Foundation of China (Grant No. 40473032), and the National Natural Science Foundation of China (Grant Nos. 40532011 and 40403004)

About this article

Cite this article

Zhou, H., Wu, Z., Peng, X. et al. Detection of methane plumes in the water column of Logatchev hydrothermal vent field, Mid-Atlantic Ridge. CHINESE SCI BULL 52, 2140–2146 (2007). https://doi.org/10.1007/s11434-007-0285-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0285-y

Keywords

Navigation