Skip to main content
Log in

Study on structure-activity relationship of mutation-dependent herbicide resistance acetohydroxyacid synthase through 3D-QSAR and mutation

  • Articles
  • Chemical Biology
  • Published:
Chinese Science Bulletin

Abstract

Seventy-four sulfonylureas were synthesized and tested for their inhibitory activity against the whole enzyme of E. coli acetohydroxyacid synthase (AHAS, EC 2.2.1.6) isoenzyme II, and 3D-QSAR analyses were performed based on these inhibitory activities. The binding conformation of chlorimuron-ethyl, a commercial herbicide of AHAS, in the crystal structure of AHAS complex was extracted and used as template to build the initial three-dimensional structure of other sulfonylureas, and then all structures were fully geometry optimized. After systematic optimization of the alignment rule, molecular orientation, grid space and attenuation factor, two satisfactory models with excellent performances (CoMFA: q 2 = 0.735, r 2 = 0.954, n = 7, r 2pred = 0.832; CoMSIA: q 2 = 0.721, r 2 = 0.913, n = 8, r 2pred = 0.844) were established. By mapping the 3D contour maps of CoMFA and CoMSIA models into the possible inhibitory active site in the crystal structure of catalytic subunit of yeast AHAS, a plausible binding model for AHAS, with best fit QSAR in the literature so far, was proposed. Moreover, the results of 3D-QSAR were further utilized to interpret resistance of site-directed mutants. A relative activity index (RAI) for AHAS enzyme mutant was defined for the first time to relate the 3D-QSAR and resistance of mutants. This study, for the first time, demonstrated that combination of 3D-QSAR and enzyme mutation can be used to decipher the molecular basis of ligand-receptor interaction mechanism. This study refined our understanding of the ligand-receptor interaction and resistance mechanism in AHAS-sulfonylurea system, and provided basis for designing new potent herbicides to combat the herbicide resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Defelice M, Guardiola J, Esposito B, et al. Structural genes for a newly recognized acetolactate synthase in Escherichia coli K-12. J Bacteriol, 1974, 120(3): 10680–1077

    Google Scholar 

  2. Guardiola J, Defelice M, Lamberti A, et al. Acetolactate synthaseisoenzymes of Escherichia Coli K-12. Mol Gen Genet, 1977, 156(1): 17–25

    Article  Google Scholar 

  3. Duggleby R G, Pang S S. Acetohydroxyacid synthase. J Biochem Mol Biol, 2000, 33(1): 1–36

    Google Scholar 

  4. Ray T B. Herbicides as inhibitors of amino acid biosynthesis. In: Boger P, Sandmann G, eds. Target Sites of Herbicide Action. Boca Raton: CRC Press Inc., 1989. 105–125

    Google Scholar 

  5. Schloss J V. Modern aspects of enzyme inhibition with particular emphasis on reaction-intermediate analogs and other potent, reversible inhibitors. In: Boger P, Sandmann G, eds. Target Sites of Herbicide Action. Boca Raton: CRC Press Inc., 1989. 165–245

    Google Scholar 

  6. Ott K H, Kwagh J G, Stockton G W, et al. Rational molecular design and genetic engineering of herbicide resistant crops by structure modeling and site-directed mutagenesis of acetohydroxyacid synthase. J Mol Biol, 1996, 263(2): 359–368

    Article  Google Scholar 

  7. Ibdah M, Barllan A, Livnah O, et al. Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis. Biochemistry, 1996, 35(50): 16282–16291

    Article  Google Scholar 

  8. Chang A K, Duggleby R G. Herbicide-resistant forms of Arabidopsis thaliana acetohydroxyacid synthase: characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants. Biochem J, 1998, 333: 765–777

    Google Scholar 

  9. Hill C M, Duggleby R G. Mutagenesis of Escherichia coli acetohydroxyacid synthase isoenzyme II and characterization of three herbicide-insensitive forms. Biochem J, 1998, 335: 653–661

    Google Scholar 

  10. Lee Y T, Chang A K, Duggleby R G. Effect of mutagenesis at serine 653 of Arabidopsis thaliana acetohydroxyacid synthase on the sensitivity to imidazolinone and sulfonylurea herbicides. FEBS Lett, 1999, 452(3): 341–345

    Article  Google Scholar 

  11. Duggleby R G, Pang S S, Yu H Q, et al. Systematic characterization of mutations in yeast acetohydroxyacid synthase-Interpretation of herbicide-resistance data. Eur J Biochem, 2003, 270(13): 2895–2904

    Article  Google Scholar 

  12. Pang S S, Duggleby R G, Guddat L W. Crystal structure of yeast acetohydroxyacid synthase: A target for herbicidal inhibitors. J Mol Biol, 2002, 317(2): 249–262

    Article  Google Scholar 

  13. Pang S S, Guddat L W, Duggleby R G. Molecular basis of sulfonylurea herbicide inhibition of acetohydroxyacid synthase. J Biol Chem, 2003, 278(9): 7639–7644

    Article  Google Scholar 

  14. McCourt J A, Pang S S, Guddat L W, et al. Elucidating the specificity of binding of sulfonylurea herbicides to acetohydroxyacid synthase. Biochemistry, 2005, 44(7): 2330–2338

    Article  Google Scholar 

  15. McCourt J A, Pang S S, King-Scott J, et al. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc Natl Acad Sci USA, 2006, 103(3): 569–573

    Article  Google Scholar 

  16. Yang G F, Huang X Q. Development of quantitative structure-activity relationships and its application in rational drug design. Curr Pharmaceut Des, 2006, 12(35): 4601–4611

    Article  Google Scholar 

  17. Liu J, Wang X, Ma Y, et al. Comparative molecular field analysis on a set of new herbicidal sulfonylurea compounds. Chin Chem Lett, 1997, 8(6): 503–504

    Google Scholar 

  18. Liu J, Li Z M, Wang X, et al. Comparative molecular field analysis (CoMFA) of new herbicidal sulfonylurea compounds. Sci China Ser B-Chem, 1998, 41(1): 50–53

    Google Scholar 

  19. Yang G F, Zhao G F, Lu R J, et al. Design, synthesis and bioactivity of novel ALS inhibitors (V)—Initial model of the herbicidal sulfonylureas and fused heterocyclic sulfonamides binding with receptor. Sci China Ser B-Chem, 1998, 41(4): 353–360

    Google Scholar 

  20. Yang G F, Liu H Y, Yang H Z. QSAR and 3D-QSAR analysis of structurally diverse ALS inhibitors: sulfonylureas and triazolopyrimidine-2-sulfonamides. Pestic Sci, 1999, 55(12): 1143–1150

    Article  Google Scholar 

  21. Yang G F, Liu H Y, Yang X F, et al. Design, syntheses and biological activity of novel ALS inhibitors (IX)-CoMFA of sulfonylureas and triazolopyrimidine-2-sulfonamides ALS inhibitors. Sci China Ser B-Chem, 1999, 42(6): 656–662

    Article  Google Scholar 

  22. Yang G F, Yang H Z. Design, synthesis and bioactivity of novel herbicides targeted ALS (VII): Quantitative structure-activity relationships of herbicidal sulfonylureas. Chin J Chem, 1999, 17(6): 650–657

    Google Scholar 

  23. Qian X H. Quantitative studies on structure-activity relationship of sulfonylurea and benzoylphenylurea type pesticides and their substituents’ bioisosterism using synthons’ activity contribution. J Agric Food Chem, 1999, 47(10): 4415–4418

    Article  Google Scholar 

  24. Yang G F, Yang H Z. Synthesis of novel herbicidal sulfonylureas. China J Chem, 2000, 18(4): 585–589

    Google Scholar 

  25. Hou T J, Li Z M, Li Z, et al. Three-dimensional quantitative structure-activity relationship analysis of the new potent sulfonylureas using comparative molecular similarity indices analysis. J Chem Inf Comput Sci, 2000, 40(4): 1002–1009

    Article  Google Scholar 

  26. Yang H Z, Yang G F, Zhao H B, et al. Research development of rational molecular design of ALS inhibitors. Acta Chim Sin, 2001, 59(4): 447–455

    Google Scholar 

  27. Galeazzi R, Marucchini C, Orena M, et al. Molecular structure and stereoelectronic properties of herbicide sulphonylureas. Bioorg Med Chem, 2002, 10(4): 1019–1024

    Article  Google Scholar 

  28. Wang J G, Li Z M, Ma N, et al. Structure-activity relationships for a new family of sulfonylurea herbicides. J Comput-Aided Mol Des, 2005, 19(11): 801–820

    Article  Google Scholar 

  29. Xi Z, Yu Z H, Niu C W, et al. Development of a general quantum-chemical descriptor for steric effects: density functional theory based QSAR study of herbicidal sulfonylurea analogues. J Comput Chem, 2006, 27(13): 1571–1576

    Article  Google Scholar 

  30. Cramer R D, Patterson D E, Bunce J D. Comparative molecular-field analysis (Comfa). 1. Effect of shape onbinding of steroids to carrier proteins. J Am Chem Soc, 1988, 110(18): 5959–5967

    Article  Google Scholar 

  31. Klebe G, Abraham U, Mietzner T. Molecular similarity indexes in a comparative-analysis (Comsia) of drug molecules to correlate and predict their biological-activity. J Med Chem, 1994, 37(24): 4130–4146

    Article  Google Scholar 

  32. Engel S, Vyazmensky M, Vinogradov M, et al. Role of a conserved arginine in the mechanism of acetohydroxyacid synthase-Catalysis of condensation with a specific ketoacid substrate. J Biol Chem, 2004, 279(23): 24803–24812

    Article  Google Scholar 

  33. The QIAexpressionist: A hand book for high-level expression and purification of 6xHis-tagged proteins. QIAGEN, USA

  34. Bradford M M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem, 1976, 72(1–2): 248–254

    Article  Google Scholar 

  35. Westerfeld W W. A colorimetric determination of blood acetoin. J Biol Chem, 1945, 161(2): 495–502

    Google Scholar 

  36. Singh B K, Stidham M A, Shaner D L. Assay of acetohydroxyacid synthase. Anal Biochem, 1988, 171(1): 173–179

    Article  Google Scholar 

  37. Tripos Associates: SYBYL. Version 6.9. St. Louis, Missouri. 2002

  38. Clark M, Cramer R D, Vanopdenbosch N. Validation of the general-purpose Tripos 5.2 force-field. J Comput Chem, 1989, 10(8): 982–1012

    Article  Google Scholar 

  39. Powell M J D. Restart procedures for conjugate gradient method. Math Program, 1977, 12(2): 241–254

    Article  Google Scholar 

  40. Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity-a papid access to atomic charges. Tetrahedron, 1980, 36(22): 3219–3228

    Article  Google Scholar 

  41. Wold S, Albano, C, Dunn W J, et al. Multivariate data analysis in chemistry. NATO ASI Ser, Ser C, 1984, 138: 17–95

    Google Scholar 

  42. Lindgren F, Geladi P, Wold S. The kernel algorithm for Pls. J Chemometr, 1993, 7(1): 45–59

    Article  Google Scholar 

  43. Rannar S, Lindgren F, Geladi P, et al. A Pls kernel algorithm for data sets with many variables and fewer objects. 1. Theory and Algorithm. J Chemometr, 1994, 8(2): 111–125

    Article  Google Scholar 

  44. Cho S J, Tropsha A. Cross-validated R(2)-guided region selection for comparative molecular-field analysis-a simple method to achieve consistent results. J Med Chem, 1995, 38(7): 1060–1066

    Article  Google Scholar 

  45. Wang R X, Gao Y, Liu L, et al. All-orientation search and all-placement search in comparative molecular field analysis. J Mol Model, 1998, 4(8): 276–283

    Article  Google Scholar 

  46. Du Q S, Liu P J, Sun H, et al. Quantum chemical description for molecular lipophilicity and hydrophilicity: II. Lipophilic indices and hydrophilic indices of aminoacid side chains. Acta Chim Sin, 2006, 64(1): 22–26

    Google Scholar 

  47. Xi Z, Niu C W, Li Q X, et al. Studies on herbicide design through mutation on herbicidal target acetohydroxyacid synthase(I). Enzyme kinetics of wild type and mutants of E. coli AHAS II. Chin J Pestic Sci, 2005, 7(3): 215–220

    Google Scholar 

  48. Xi Z, Niu C W, Ban S R, et al. Studies on herbicide design through mutation on herbicidal target acetohydroxyacid synthase(II). Effects of mutagenesis at tryptophan 464 of E. coli acetohydroxyacid synthase on herbicidal molecules. Chin J Pestic Sci, 2005, 7(4): 311–315

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Zhen.

Additional information

Supported by the National Key Basic Research Project (Grant No. 2003CB114400), the National Natural Science Foundation of China (Grant No. 20432010), the Key Project of Ministry of Education, China (Grant No. 104189), and ISC of Nankai University

About this article

Cite this article

Yu, Z., Niu, C., Ban, S. et al. Study on structure-activity relationship of mutation-dependent herbicide resistance acetohydroxyacid synthase through 3D-QSAR and mutation. Chin. Sci. Bull. 52, 1929–1941 (2007). https://doi.org/10.1007/s11434-007-0267-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0267-0

Keywords

Navigation