Chinese Science Bulletin

, Volume 52, Issue 11, pp 1462–1467 | Cite as

DNA addition using linear self-assembly

  • Zhao Jian 
  • Qian LuLu 
  • Liu Qiang 
  • Zhang ZhiZhou 
  • He Lin 
Articles Biological Physics

Abstract

This paper presents a DNA algorithm which adds two nonnegative binary integers using self-assembly in constant steps. The approach has the benefit of greater experimental simplicity when compared with previous DNA addition algorithms. For the addition of two binary n-bit integers, O(n) is different from DNA strands and only O(1) biochemical experimental procedures are required.

Keywords

DNA addition computing self-assembly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman L M. Molecular computation of solutions to combinatorial problems. Science, 1994, 266: 1021–1024CrossRefGoogle Scholar
  2. 2.
    Guarnieri F, Fliss M, Bancroft C, et al. Making DNA add. Science, 1996, 273: 220–223CrossRefGoogle Scholar
  3. 3.
    Gupta V, Parthasarathy S, Zaki M J. Arithmetic and logic operations with DNA. In: Rubin H, wood D H, eds. DNA Based Computer III, DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Providence: American Mathematical Society, 1997. 212–220Google Scholar
  4. 4.
    Qiu Z F, Lu M. Arithmetic and logic operations for DNA computers. In: Gupta G, Pritchard P, eds. Proceedings of the Second IASTED International Conference on Parallel and Distributed Computing and Networks. Brisbane: IASTED, 1998. 481–486Google Scholar
  5. 5.
    Wasiewicz P, Mulawka J J, Rudnicki W R, et al. Adding numbers with DNA. In: Proceedings 2000 IEEE International Conference on Systems, Man & Cybernetics-SMC2000, Vol 1. Tennessee: IEEE Press, 2000. 265–270CrossRefGoogle Scholar
  6. 6.
    Barua R, Misra J. Binary arithmetic for DNA computers. In: Hagiya M, Ohuchi A, eds. DNA Computing, 8th International Workshop on DNA-Based Computers, DNA8, Revised Papers Series: Lecture Notes in Computer Science, Vol 2568. Berlin: Springer-Verlag, 2002. 124–132Google Scholar
  7. 7.
    LaBean T H, Winfree E, Reif J H. Experimental progress in computation by self-assembly of DNA tilings. In: Winfree E, Gifford D K, eds. DNA based computer V, DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Rhode Island: American Mathematical Society, 2000. 54: 123–140Google Scholar
  8. 8.
    Hug H, Schuler R. DNA-based parallel computation of simple arithmetic. In: Jonoska N, Seeman N C, eds. DNA Computing, 7th International Workshop on DNA-Based Computers, DNA7, Revised Papers Series: Lecture Notes in Computer Science, Vol 2340. Berlin: Springer-Verlag, 2002. 321–328Google Scholar
  9. 9.
    Fujiwara A, Matsumoto K, Chen W. Addressable procedures for logic and arithmetic operations with DNA strands. In: Proceedings of the 17th International Symposium on Parallel and Distributed Processing. Washington: IEEE Computer Society, 2003. 162–167Google Scholar
  10. 10.
    Feldkamp U, Banzhaf W, Rauhe H. A DNA sequence compiler. In: Condon A, Rozenberg G, eds. DNA Computing, 6th International Workshop on DNA-Based Computers, DNA6, DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Berlin: Springer-Verlag, 2000. 253Google Scholar
  11. 11.
    Fan C, Plaxco K W, Heeger A J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci USA, 2003, 100: 9134–9137CrossRefGoogle Scholar

Copyright information

© Science In China Press 2007

Authors and Affiliations

  • Zhao Jian 
    • 1
  • Qian LuLu 
    • 1
  • Liu Qiang 
    • 1
  • Zhang ZhiZhou 
    • 1
    • 3
  • He Lin 
    • 1
    • 2
  1. 1.Bio-X DNA Computer ConsortiumShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Institute for Nutritional Sciences, Shanghai Institutes of Biological SciencesChinese Academy of ScienceShanghaiChina
  3. 3.Tianjin University of Science and TechnologyTianjinChina

Personalised recommendations