Skip to main content
Log in

Fossils of Quercus sect. Heterobalanus can help explain the uplift of the Himalayas

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

Using data from previous research on Quercus sect. Heterobalanus, the coexistence approach to Xixabangma and Namling fossil sets, and altitudinal ranges of vegetation presented by fossil floras, a review and reevaluation have been made of existing theories on the uplift of the Himalayas, especially the palaeoaltitudes of Xixabangma and Namling in Tibet. The Xixabangma fossil set has a palaeoaltitude range of 2500–3500 m, and has risen 2200–3400 m since the Pliocene. The lower and upper assemblages of the Miocene Namling had palaeoaltitudes of 2500–3000 m and 2800–3000 m, respectively. Therefore, Namling has risen at least 1300 m since the Miocene, thereby challenging some existing theories that suggest Namling has been static since the Miocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu R, Tao J R, Sun X J. On the Discovery of a Quercus semicarpifolia Bed in Mount Xixabangma and its Significance in Botany and Geology. Act Bot Sin (in Chinese), 1973, 15(1): 103–119

    Google Scholar 

  2. Li J J, Wen S X, Zhang Q S, et al., A discussion on the period, amplitude and type of lift of Qinghai-Xizang Plateau. Sci Sin (in Chinese), 1979, 22(11): 1314–1328

    Google Scholar 

  3. Li J J, Fang X M, Ma H Z, et al. Geomorphologic and environmental evolution in the upper reaches of Yellow River during the Late Cenozoic. Sci China Ser D-Earth Sci, 1996, 26(4): 316–322

    Google Scholar 

  4. Li J J, Fang X M, Pan B T, et al. Qinghai-Tibetan Plateau violent uplift and influence upon circumjacent environment in Late Cenozoic. Quaternary Sci (in Chinese), 2001, 21(5): 381–390

    Google Scholar 

  5. Coleman M, Hodges K. Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east-west extension. Nature, 1995, 374: 49–52

    Article  Google Scholar 

  6. Spicer R A, Harris N B W, Widdowson M, et al. Constant elevation of southern Tibet over the past 15 million years. Nature, 2003, 421: 622–624

    Article  Google Scholar 

  7. Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibetan Plateau. Science, 2003, 294: 1671–1677

    Article  Google Scholar 

  8. Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 2002, 416: 159–163

    Article  Google Scholar 

  9. Li J J, Fang X M. Uplift and environmental change of Qinghai-Tibetan Plateau. Chin Sci Bull, 1998, 43(15): 1569–1574

    Article  Google Scholar 

  10. Shi Y F, Li J J, Li B Y, et al. Uplift of the Qinghai-Xizang (Tibetan) Plateau and East Asia environmental change during late Cenozoic. Acta Geograp Sin (in Chinese), 1999, 54(1): 10–21

    Google Scholar 

  11. Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet. Science, 1992, 255: 1663–1670

    Article  Google Scholar 

  12. Rea D K, Snoeckx H, Joseph L H, Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the Northern Hemisphere. Paleoceanography, 1998, 13: 215–224

    Article  Google Scholar 

  13. Shi Y F, Li J J, Li B Y, et al. Uplift and environmental evolution of Qinghai-Xizang (Tibetan) plateau. In: Sun H L, Zheng D. eds. Formation, Evolution and Development of Qinghai-Xizang (Tibetan) Plateau (in Chinese). Guangzhou: Guangdong Science & Technology Press, 1998. 73–138

    Google Scholar 

  14. Zheng D. eds. Formation, Environment and Development of Qinghai-Xizang (Tibetan) Plateau (in Chinese). Shijiazhuang: Hebei Science & Technology Press, 2003

    Google Scholar 

  15. Shi Y F, Liu D F. Preliminary report of scientific investigation on Mount Xixabangma. Chin Sci Bull (in Chinese), 1964, 10: 928–938

    Google Scholar 

  16. Fang X M, Li J J. The stages of the plateau uplift. In: Zhang D. eds. Formation, Environment and Development of Qinghai-Xizang (Tibetan) Plateau (in Chinese). Shijiazhuang: Hebei Science & Technology Press, 2003: 37–47

    Google Scholar 

  17. Skiger B, Porter S. Physical Geology. New York: John & Wiley, 1987: 256–259

    Google Scholar 

  18. Kroon D, Steen T N F, Truoelstra S R. Onset of the uplift of the Qinghai-Xizang Plateau. Quat Sci Rev, 1991, 10: 479–483

    Article  Google Scholar 

  19. Quade J, Cerling T E, Bowman J R. Development of Asian Monson revealed by marked ecological shift during the latest Miocene in Northern Pakistan. Nature, 1989, 342: 163–166

    Article  Google Scholar 

  20. Quade J, Cerling T E. Expansion of C4 grasses in the late Miocene of Northern Pakistan: evidence from stable isotopes in paleosols. Paleogreogr Paleogclimatol Paleoecol, 1995, 115: 91–116

    Article  Google Scholar 

  21. Guo Z T, Peng S Z, Hao Q Z, et al. Origin of the Miocene-Pliocene Red-Earth formation at Xifeng in northern China and implication for paleoenvironments. Paleogeogr Paleoclimatol Paleoecol, 2001, 170: 11–26

    Article  Google Scholar 

  22. Sun X J, Wang P X. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 222: 181–222

    Article  Google Scholar 

  23. Kutzbach J E, Prell W L, Ruddiman W F. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. J Geol, 1993, 101: 177–190

    Article  Google Scholar 

  24. Kutzbach J E, Ruddiman W F, Prell W L. Possible effects of Cenozoic uplift and CO2 lowering on global and regional hydrology. In: Rudiman W F. ed. Tectonic Uplift and Climate Change. New York: Plenum Press, 1997, 149–170

    Google Scholar 

  25. An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since late Miocene times. Nature, 2001, 411: 62–66

    Article  Google Scholar 

  26. Zhou Z K, Pu C X, Chen W Y. Relationship between the distributions of Quercus sect. Heterobalanus (Fagaceae) and uplift of Himalayas. Adv Earth Sci (in Chinese), 2003: 18(6): 884–889

    Google Scholar 

  27. Zhou Z K. A taxnomical revision of fossil evergreen sclerophyllous oaks from China. Act Bot Sin (in Chinese), 1992, 34(12): 54–61

    Google Scholar 

  28. Zhou Z K. Fossil history of Quercus. Act Bot Yun (in Chinese), 1993, 15(1): 21–23

    Google Scholar 

  29. The Writing Group of Cenozoic Plant in China. Fossil Plants of China Vol. 13. Cenozonic Plants from China (in Chinese). Beijing: Science Press, 1978. 42–57

    Google Scholar 

  30. Tao J R, Zhou Z K, Liu Y S. The evolution of the Late Cretaceous-Cenozonic Flora in China (in Chinese). Beijing: Science Press, 2000. 6–72

    Google Scholar 

  31. Menitsky L L. Oaks of Asia. Moscow: Leningosed Sciences, 1984, 1–119

    Google Scholar 

  32. Li J Q, Guo Y S, Li Q, et al. Investigation report about life history diversities of sclerophyllous oaks in Tibet. J Beijing Forestry University (in Chinese), 1996, 18(1): 94–97

    Google Scholar 

  33. Yang Q Z. The characteristics and classification of oak durisilvae in the Himalayan region of China. Acta Phytoecol Geobotanica Sin (in Chinese), 1990, 14(3): 197–211

    Google Scholar 

  34. Li H M, Guo S X. The Miocene flora Nanmuling of Xizang. Acta Palaeont Sin (in Chinese), 1976, 15(4): 598–609

    Google Scholar 

  35. Huang C J, Zhang Y T, Hsu Y C, et al. Fagaceae. In: Chen H Y, Huang C J. eds. Flora of China. Vol. 14 (in Chinese). Beijing: Science Press, 1998, 213–332

    Google Scholar 

  36. Huang C J, Zhang Y T, Barthlomeaw R. Fagaceae. In: Wu Z Y, Raven P. eds. Flora of China. Vol.14. Beijing: Science Press, St. Louis: Missouri Botanical Garden Press, 1999. 314–380

    Google Scholar 

  37. Hsu Y C, Jen X W. Fagaceae. In: Wu Z Y. ed. Flora of Tibet Vo. 11 (in Chinese). Beijing: Science Press, 1983, 485–500

    Google Scholar 

  38. Ching R C, Wu S K. Selaginellaceae. In: Wu Z Y. ed. Flora of Tibet. Vol. 11 (in Chinese). Beijing: Science Press, 1983. 18–27

    Google Scholar 

  39. Ching R C, Wu S K. Pteridiaceae. In: Wu Z Y. ed. Flora of Tibet. Vol. 11 (in Chinese). Beijing: Science Press, 1983. 66–73

    Google Scholar 

  40. Ching R C, Wu S K. Polypodiaceae. In: Wu Z Y. ed. Flora of Tibet. Vol.11 (in Chinese). Beijing: Science Press, 1983. 291–340

    Google Scholar 

  41. Wang Z, Fang C F, Zhao S D, et al. Salicaceae. In: Wu Z Y. ed. Flora of Tibet. Vol.11 (in Chinese). Beijing: Science Press, 1983. 412–470

    Google Scholar 

  42. Li P C. Betulaceae. In: Wu Z Y. ed. Flora of Tibet. Vol.11 (in Chinese). Beijing: Science Press, 1983. 474–484

    Google Scholar 

  43. Fu L K. Ulmaceae. In: Wu Z Y. Flora of Tibet. Vol. 11 (in Chinese). Beijing: Science Press, 1983. 501–509

    Google Scholar 

  44. Ming T L, Fang R C, Huang S H. Ericaceae. In: Wu Z Y. ed. Flora of Tibet Vol. 13 (in Chinese). Beijing: Science Press, 1986. 552–732

    Google Scholar 

  45. Li P C, Ni Z C. Leguminaceae. In: Wu Z Y ed. Flora of Tibet. Vo.12 (in Chinese). Beijing: Science Press, 1985. 701–907

    Google Scholar 

  46. Wu C Y, Ding T Y. Seed Plants of China (CD). Kunming: Yunnan Science & Technology Press, 1998

    Google Scholar 

  47. Mosbrugger V, Utescher T. The coexistence approach-a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeogr Palaeoclimatol Palaeoecol, 1997, 134: 61–86

    Article  Google Scholar 

  48. Jin Z Z. Hard evergreen broad-leaf forests. In: Wu Z Y. ed. Flora in China (in Chinese). Beijing: Science Press, 1981. 356–363

    Google Scholar 

  49. Li W H. Main types and characters of Tibeten forests. In: Li W H. ed. Tibeten Forests (in Chinese). Beijing: Science Press, 1985. 38–152

    Google Scholar 

  50. Chen W L. Forests. In: Scientific work group of Qinghai-Xizang Plateau investigation, eds. Flora in Tibet (in Chinese). Beijing: Science Press, 1988. 98–147

    Google Scholar 

  51. The Working Group of Flora in Sichuan. eds. Flora in Sichuan (in Chinese). Chengdu: Sichuan People’s Press, 1980. 109–127

    Google Scholar 

  52. Jin Z Z. The sclerophyllous evergreen broad-leaf forest. In: Wu Z Y, Zhu Y C, eds. Flora in Yunnan (in Chinese). Beijing: Science Press, 1987. 382–396

    Google Scholar 

  53. Zhou Z K, Wilkinson H, Wu Z Y. Taxonomical and Evolutionary implications of the leaf anatomy and architecture of Quercus L. subg. Quercus from China. Cathaya, 1995, 7:1–34

    Google Scholar 

  54. Wolfe J A. A method for obtaining climate parameters from leaf assemblages. US Geol Surv Bull, 1993, 2040: 71

    Google Scholar 

  55. Wolfe J A, Schorn H W, Forest C E, et al. Paleobotanical evidence for high altitudes in Nevada during the Miocene. Science, 1997, 276: 1672–1675

    Article  Google Scholar 

  56. Gřubb P J. Interpretation of the “Massenerhebung effect on tropical mountains”. Nature, 1971, 229: 44–45

    Article  Google Scholar 

  57. McCain C M. Elevational gradients in diversity of small mammals. Ecology, 2005, 86(2): 366–372

    Google Scholar 

  58. Fang J Y, Guo Q H, Liu G H. Distribution patterns of Chinese beech (Fagus L.) species in relation to topography. Act Bot Sin (in Chinese), 1999, 41(7): 766–774

    Google Scholar 

  59. Xu R. On the palaeobotanical evidence for continental drift and Himalayan uplift. Palaeobot, 1978, 25: 131–142

    Google Scholar 

  60. Liu D S, Zhang X S. The impact of plateau uplifting on surrounding areas. In: Sun H L, Zheng D, eds. Formation, Evolution and Development of Qinghai-Xizang (Tibetan) Plateau (in Chinese). Guangzhou: Guangdong Science & Technology Press, 1998. 179–230

    Google Scholar 

  61. Royer D L, Wilf P, Janesko D A, et al. Correlations of climate and plant ecology to leaf size and shape: Potential proxies for the fossil record. Am J Bot, 2005, 92(7): 1141–1151

    Google Scholar 

  62. Huff P M, Wilf P, Azumah E J. Digital future for paleoclimate estimation from fossil leaves? Preliminary results. Palaios, 2003, 18(3): 266–274

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou ZheKun.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 40332021, 30670159) and Wu Zhengyi’s Splendidly Contributing Award of Yunnan Province (Grant No. KIB-WU-2001-01)

About this article

Cite this article

Zhou, Z., Yang, Q. & Xia, K. Fossils of Quercus sect. Heterobalanus can help explain the uplift of the Himalayas. CHINESE SCI BULL 52, 238–247 (2007). https://doi.org/10.1007/s11434-007-0005-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0005-7

Keywords

Navigation