Skip to main content
Log in

Diversity of arbuscular mycorrhizal fungi associated with desert ephemerals growing under and beyond the canopies of Tamarisk shrubs

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

The arbuscular mycorrhizal (AM) fungal status of the four most common ephemeral plant species, Chorispora tenella (Pall.) DC., Ceratocephalus testiculatus (Crantz) Bess., Eremopyrum orientale (L.) Jaub et. Spash and Veronica campylopoda Boiss growing in an area dominated by Tamarisk shrubs (Tamarix spp.) was investigated. Samples of the four ephemerals and their rhizosphere soils were collected from underneath and beyond the canopies of the Tamarisk shrubs. Plant mycorrhizal status and soil AM fungal spore densities and community structures were analyzed and compared under and beyond the shrub canopies. The mycorrhizal colonization rates of the ephemerals and spore densities in their corresponding rhizosphere soils were significantly lower under the shrub canopies than beyond. The number of AM fungal species under the shrubs (12) was also lower than beyond the canopies (19). When soil properties in the rhizospheres of the four ephemerals were examined, available N and P and total P, organic matter content, total salt content and electrical conductivity (EC) were all higher under the canopies than beyond. In contrast, soil available K and pH showed no such trend. A total of 21 AM fungal species were isolated from rhizosphere soils of the four ephemerals. Five belonged to Acaulospora, one to Archaeospora, thirteen to Glomus and two to Paraglomus. We conclude that the canopies of Tamarix spp. exerted some influence on the AM status of the ephemerals and on the AM fungal communities and some of the properties of their rhizosphere soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garner W, Steinberger Y. A proposed mechanism for the formation of ‘Fertile Islands’ in the desert ecosystem. J Arid Environ, 1989, 16: 257–262

    Google Scholar 

  2. Reynolds J F, Virginia R A, Cornelius J M. Resource island formation associated with the desert shrubs, creosote bush (Larrea tridentata) and mesquite (Prosopis glandulosa) and its role in the stability of desert ecosystems: A simulation model. Suppl Bull Ecol Soc Am, 1990, 70: 299–300

    Google Scholar 

  3. Schlesinger W H, Raikes J A, Hartley A E, et al. On the spatial pattern of soil nutrients in desert ecosystems. Ecology, 1996, 77: 364–374

    Article  Google Scholar 

  4. Callaway R M. Positive interactions among plants. Bot Rev, 1995, 61: 306–349

    Article  Google Scholar 

  5. Callaway R M. Positive interactions in plant communities and the individualistic-continuum concept. Oecologia, 1997, 112: 143–149

    Article  Google Scholar 

  6. Titus J H, Nowak R S, Smith S D. Soil resource heterogeneity in the Mojave Desert. J Arid Environ, 2002, 52: 269–292

    Article  Google Scholar 

  7. Tiedemann A R, Klemmedson J O. Effect of mesquite trees on vegetation and soils in the desert grassland. J Range Manage, 1977, 30: 361–367

    Google Scholar 

  8. McAuliffe J R. Markovian dynamics of simple and complex desert plant communities. Am Nat, 1988, 131: 459–490

    Article  Google Scholar 

  9. Franco A C, Nobel P S. Effect of nurse plants on the microhabitat and growth of cacti. J Ecol, 1989, 77: 870–886

    Article  Google Scholar 

  10. Valiente-Banuet A, Ezcurra E. Shade as a cause of the association between the cactus Neobuxbaumia tetetzo and the nurse plant Mimosa luisana in the Tehuacan Valley, Mexico. J Ecol, 1991, 79: 961–971

    Article  Google Scholar 

  11. He X L, Mouratov S, Steinberger Y. Temporal and spatial dynamics of vesicular-arbuscular mycorrhizal fungi under the canopy of Zygophyllum dumosum Boiss in the Negev Desert. J Arid Environ, 2002, 52: 379–387

    Article  Google Scholar 

  12. Trappe J M. Phylogenetic and ecological aspects of mycotrophy in angiosperms from an evolutionary standpoint. In: Safir G R, ed. Ecophysiology of VA Mycorrhiza. Boca Raton: CRC Press, 1987. 5–25

    Google Scholar 

  13. Wilcox H E. Mycorrhiza. In: Waisel Y, Eshel A, Kafkaki U, eds. Plant Roots: The Hidden Half. New York: Marcel Dekker, 1991. 731–765

    Google Scholar 

  14. Schreiner R P, Mihara K L, McDaniell H, et al. Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil, 1997, 188: 199–209

    Article  Google Scholar 

  15. Jeffries P, Barea J M. Arbuscular mycorrhiza—A key component of sustainable plant-soil ecosystems. In: Hock B, ed. The Mycota, IX Fungal Associations. Berlin: Springer-Verlag, 2001. 95–113

    Google Scholar 

  16. van der Heijden G A, Klironomus J N, Ursic M, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 1998, 396: 69–72

    Article  Google Scholar 

  17. Requena N, Pérez-Solís E, Azcón-Aguilar C, et al. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol, 2001, 67: 495–498

    Article  Google Scholar 

  18. Bethlenfalvay G J, Dakessian S, Pacovsky R S. Mycorrhizae in a southern California desert, ecological implications. Can J Bot, 1984, 62: 519–524

    Article  Google Scholar 

  19. Carrillo-Garcia A, Leon de la Luz J L, Bashan Y, et al. Nurse plants, mycorrhizae, and plant establishment in a disturbed area of the Sonoran Desert. Restor Ecol, 1999, 7: 321–335

    Article  Google Scholar 

  20. Dhillion S S. Environmental heterogeneity, animal disturbances, microsite characteristics, and seedling establishment in a Quercus havardii community. Restor Ecol, 1999, 7: 399–406

    Article  Google Scholar 

  21. Azcón-Aguilar C, Palenzuela J, Roldán A, et al. Analysis of the mycorrhizal potential in the rhizosphere of representative plant species from desertification-threatened Mediterranean shrublands. Appl Soil Ecol, 2003, 22: 29–37

    Article  Google Scholar 

  22. Ferrol N, Calvente R, Cano C, et al. Analysing arbuscular mycorrhizal fungal diversity in shrub-associated resource islands from a desertification threatened semiarid Mediterranean ecosystem. Appl Soil Ecol, 2004, 25: 123–133

    Article  Google Scholar 

  23. Zhang L Y. The preliminary study on ephemerals in Mosowan District, Xinjiang. Acta Phytoecol Geobot Sin (in Chinese), 1985, 9(3): 213–221

    Google Scholar 

  24. Lapointe L. How phenology influences physiology in deciduous forest spring ephemerals. Physiol Plant, 2001, 113: 151–157

    Article  Google Scholar 

  25. Zhang L Y. Ephemeral plants in Xinjiang (I): Eco-biological characteristics. Journal of Plant (in Chinese), 2002, 1: 2–6

    Google Scholar 

  26. Wang X Q, Jiang J, Lei J Q, et al. The distribution of ephemeral vegetation on the longitudinal dune surface and its stabilization significance in the Gurbantunggut Desert. Acta Geog Sin (in Chinese), 2003, 58: 598–605

    Google Scholar 

  27. Guang G L, Li Z Y, Yang Y S, et al. Studies on the characteristics related to nitrogen fixation in the nodules of Trigonella arcuata in Xinjiang. Arid Zone Res (in Chinese), 1988, 5(4): 1–6

    Google Scholar 

  28. Li J, Akbar Y, Alimas K. An anatomical study on the vegetative organs of Senecio subdentatus Ldb. ephemeral plant in Xinjiang. Journal of Xinjiang Normal University (Natural Sciences Edition) (in Chinese), 2000, 19(4): 51–55

    Google Scholar 

  29. Wang Y. Phenological observation of the early spring ephemeral and ephemeroid plant in Xinjiang. Arid Zone Res (in Chinese), 1993, 10(3): 34–39

    Google Scholar 

  30. Yu X F, Li A Q. A anatomical study on the ephmeral plant Lepidun Apalum Willd in Xinjiang. Journal of Xinjiang Normal University (Natural Sciences Edition) (in Chinese), 1997, 16(2): 34–38

    Google Scholar 

  31. Liu R J, Li X L. Arbuscular Mycorrhizas and Their Application (in Chinese). Beijing: Science Press, 2000. 66–68

    Google Scholar 

  32. Lu R K. Methods of Soil and Agricultural Chemistry Analyses (in Chinese). Beijing: China Agricultural Science and Technology Press, 1999. 1–227

    Google Scholar 

  33. Biermann B, Linderman R G. Quantifying vesicular arbuscular mycorrhizae: A proposed methods towards standardization. New Phytol, 1981, 87: 63–67

    Article  Google Scholar 

  34. Trouvelot A, Kough J L, Gianinazzi-Pearson V. Mesure du taux de mycorhization VA d’un systeme radiculaire, recherche de methodes d’estimation ayant une significantion functionnelle. In: Gianinazzi-Pearson V, Gianinazzi S, eds. Physiological and Genetic Aspectes of Mycorrhizae. Paris: INRA Press, 1986. 217–221

    Google Scholar 

  35. Sieverding E. Vesicular-arbuscular Mycorrhiza Management in Tropical Agrosystems. Eschborn: Deutsche Gesellschaft für Technische Zusammenarbeit, 1991. 367–371

    Google Scholar 

  36. Schenk N C, Perez Y. Manual for Identification of VA Mycorrhizal Fungi. Florida: Synergistic Publications, 1990. 1–255

    Google Scholar 

  37. Morton J B, Redecker D. Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia, 2001, 93: 181–195

    Google Scholar 

  38. Zhao Y L, Zhao H L. A brief review on vegetation succession research in desertification processes of China. Journal of Desert Research (in Chinese), 2000, (Suppl): 7–14

  39. Li X R, Zhang J G, Wang X P, et al. Study on soil microbiotic crust and its influences on sand-fixing vegetation in arid desert region. Acta Bot Sin, 2000, 42(9): 965–970

    Google Scholar 

  40. Wang T, Zhu Z D. Some problems of desertification in northern China. Quaternary Science (in Chinese), 2001, 21(2): 56–65

    Google Scholar 

  41. Pawlowska T E, Taylor J W. Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature, 2004, 427: 733–737

    Article  Google Scholar 

  42. Francis R, Read D J. Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature, 1984, 307: 53–56

    Article  Google Scholar 

  43. Lerat S, Gauci R, Catford J G, et al. 14C transfer between the spring ephemeral Erythronium americanum and sugar maple saplings via arbuscular mycorrhizal fungi in natural stands. Oecologia, 2002, 132: 181–187

    Article  Google Scholar 

  44. Smith S E, Read D J. Mycorrhizal Symbiosis. London: Academic Press, 1997. 1–378

    Google Scholar 

  45. Miller J C, Rajapakse S, Garber R K. Vesicular-arbuscular mycorrhizae in vegetable crops. Hortscience, 1986, 21: 974–984

    Google Scholar 

  46. Dhillion S S, Ampornpan L. The influence of inorganic nutrient fertilization on the growth, nutrient composition and vesicular-arbuscular mycorrhizal colonization of pretransplant rice (Oryza sativa L.) plants. Biol Fertil Soils, 1992, 13: 85–91

    Article  Google Scholar 

  47. He X L, Mouratov S, Steinberger Y. Spatial distribution and colonization of arbuscular mycorrhizal fungi under the Canopies of desert halophytes. Arid Land Res Manag, 2002, 16: 149–160

    Article  Google Scholar 

  48. Dhillion S S, Zak J C. Microbial dynamics in arid ecosystems: Desertification and the potential role of mycorrhizas. Rev Chil Hist Nat, 1993, 66: 253–270

    Google Scholar 

  49. Kennedy L J, Tiller R L, Jean C. Stutz associations between arbuscular mycorrhizal fungi and Sporobolus wrightii in riparian habitats in arid South-western North America. J Arid Environ, 2002, 50: 459–475

    Article  Google Scholar 

  50. Kennedy A C, Smith K L. Soil microbial diversity and the sustainability of agriculture soils. Plant Soil, 1995, 170: 75–86

    Article  Google Scholar 

  51. Brundrett M C. Mycorrhizas in natural ecosystems. In: Macfayden A, Begon M, Fitter A H, eds. Advances in Ecological Research. London: Academic Press, 1991. 171–313

    Google Scholar 

  52. Jasper D A, Abbot L K, Robson A D. The effect of soil disturbance on vesicular-arbuscular mycorrhizal fungi in soils from different vegetation types. New Phytol, 1991, 118, 471–476

    Article  Google Scholar 

  53. McLellan A J, Fitter A H, Law R. On decaying roots, mycorrhizal colonisation and the design of removal experiments. J Ecol, 1995, 83: 225–230

    Article  Google Scholar 

  54. Requena N, Jeffries P, Barea J M. Assessment of natural mycorrhizal potential in a desertified semiarid ecosystem. Appl Environ Microbiol, 1996, 62: 842–847

    Google Scholar 

  55. Zhao Z W, Xia Y M, Qin X Z, et al. Arbuscular mycorrhizal status of plants and the spore density of arbuscular mycorrhizal fungi in the tropical rain forest of Xishuangbanna, southwest China. Mycorrhiza, 2001, 11: 159–162

    Article  Google Scholar 

  56. Bashan Y, Davis E A, Carrillo-Garcia A, et al. Assessment of VA mycorrhizal inoculum potential in relation to the establishment of cactus seedlings under mesquite nurse-trees in the Sonoran Desert. Appl Soil Ecol, 2000, 14: 165–175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gu.

About this article

Cite this article

Shi, Z., Zhang, L., Feng, G. et al. Diversity of arbuscular mycorrhizal fungi associated with desert ephemerals growing under and beyond the canopies of Tamarisk shrubs. CHINESE SCI BULL 51 (Suppl 1), 132–139 (2006). https://doi.org/10.1007/s11434-006-8217-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-006-8217-9

Keywords

Navigation