Skip to main content
Log in

Application of high magnetic fields in advanced materials processing

  • Reviews
  • Published:
Chinese Science Bulletin

Abstract

Recently, steady magnetic fields available from cryogen-free superconducting magnets open up new ways to process materials. In this paper, the main results obtained by using a high magnetic field to process several advanced materials are reviewed. These processed objects primarily include superconducting, magnetic, metallic and nanometer-scaled materials. It has been found that a high magnetic field can effectively align grains when fabricating the magnetic and non-magnetic materials and make inclusions migrate in a molten metal. The mechanism is discussed from the theoretical view-point of magnetization energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watanabe K, Yamada Y, Sakuraba J, et al. (Nb,Ti)3Sn superconducting magnet operated at 11 K in vacuum using high-T c (Bi,Pb)2Sr2Ca2Cu3O10 current leads. Jpn J Appl Phys, 1993, 32: L488–L490

    Article  Google Scholar 

  2. Watanabe K, Awaji S. Cryogen-free superconducting and hybrid magnets. J Low Temp Phys, 2003, 133: 17–30

    Article  Google Scholar 

  3. Asai S, Sassa K, Tahashi M. Crystal orientation of non-magnetic materials by imposition of a high magnetic field. Sci Techn Adv Mater, 2003, 4: 455–460

    Article  Google Scholar 

  4. Beaugnon E, Tournier R. Levitation of organic materials. Nature, 1991, 349: 470

    Article  Google Scholar 

  5. de Rango P, Lees M, Lejay P, et al. Texturing of magnetic materials at high temperature by solidifcation in a magnetic field. Nature, 1991, 349: 770–772

    Article  Google Scholar 

  6. Tournier R F, Beaugnon E, Noudem J, et al. Materials processing in a magnetic force opposed to the gravity. J Magn Magn Mater, 2001, 226: 2094–2100

    Article  Google Scholar 

  7. Noudem J G, Beille J, Bourgault D, et al. Bulk textured Bi-Pb-Sr-Ca-Cu-O (2223) ceramics by solidification in a magnetic field. Physica C, 1996, 264: 325–330

    Article  Google Scholar 

  8. Ma Y W, Wang Z T. To enhance J c of Bi-2223 Ag-sheathed superconducting tapes by improving grain alignment with magnetic field. Physica C, 1997, 282: 2619–2620

    Article  Google Scholar 

  9. Liu H B, Ferreira P J, Vander Sande J B. J c enhancement of Bi2Sr2CaCu2O8/Ag thick films melt-grown under an elevated magnetic field (0–10 T). Physica C, 1999, 316: 261–266

    Article  Google Scholar 

  10. Awaji S, Ma Y W, Chen W P, et al. Magnetic field effects on synthesis process of high-T c superconductors. Curr Appl Phys, 2003, 3: 391–395

    Article  Google Scholar 

  11. Awaji S, Watanabe K, Motokawa M, et al. Melt textured process for YBCO in high magnetic fields. IEEE Trans Appl Supercond, 1999, 9: 2014–2017

    Article  Google Scholar 

  12. Ma Y W, Watanabe K, Awaji S, et al. Effect of magnetic field on growth of YBa2Cu3O7 films on MgO substrates by metalorganic chemical vapor deposition. Physica C, 2001, 353: 283–288

    Article  Google Scholar 

  13. Ma Y W, Watanabe K, Awaji S, et al. J c enhancement of YBa2Cu3O7 films on polycrystalline silver substrates by metalorganic chemical vapor deposition in high magnetic fields. Appl Phys Lett, 2000, 77: 3633–3635

    Article  Google Scholar 

  14. Ma Y W, Watanabe K, Awaji S, et al. Observation of growth-mode change under a magnetic field in YBa2Cu3O7-x. Phys Rev B, 2002, 65: 174528

    Google Scholar 

  15. Ma Y W, Xu A X, Li X H, et al. Enhanced critical current density of MgB2 superconductor synthesized in high magnetic fields. Jpn J Appl Phys, 2006, 45: L493–L496

    Article  Google Scholar 

  16. Legrand B A, Perrier de La Bathie R, Tournier R, et al. Orientation by solidification in a magnetic field: A new process to texture SmCo compounds used as permanent magnets. J Magn Magn Mater, 1997, 173: 20–28

    Article  Google Scholar 

  17. Cui B Z, Huang M Q, Yu R H, et al. Magnetic properties of (Nd,Pr,Dy)2Fe14B/α-Fe nanocomposite magnets crystallized in a magnetic field. J Appl Phys, 2003, 93: 8128–8130

    Article  Google Scholar 

  18. Kato H, Miyazaki T, Sagawa M, et al. Coercivity enhancements by high-magnetic-field annealing in sintered Nd-Fe-B magnets. Appl Phys Lett, 2004, 84; 4230–4232

    Article  Google Scholar 

  19. Masahashi N, Matsuo M, Watanabe K. Development of preferred orientation in annealing of Fe-3.25%Si in a high magnetic field. J Mater Res, 1998, 13: 457–461

    Google Scholar 

  20. Tanaka K, Ichitsubo T, Koiwa M. Effect of external fields on ordering of FePd. Mater Sci Eng A, 2001, 312: 118–127

    Article  Google Scholar 

  21. Gaucherand F, Beaugnon E. Magnetic texturing in ferromagnetic cobalt alloys. Physica B, 2004, 346: 262–266.

    Article  Google Scholar 

  22. Takagi T, Iwai K, Asai S. Solidified structure of Al alloys by a local imposition of an electromagnetic oscillationg force. ISIJ Intern, 2003, 43: 842–848

    Google Scholar 

  23. Yasuda H, Ohnaka I, Kawakami O, et al. Effect of magnetic field on solidification in Cu-Pb monotectic alloys. ISIJ Intern, 2003, 43: 942–949

    Google Scholar 

  24. Li X, Ren Z M, Sun Y, et al. Effect of high longitudinal magnetic field on the microstructure of directionally solidified Al-4.5% Cu alloy. Acta Meta Sinica, 2006, 42 147–152

    Google Scholar 

  25. Lehmann P, Moreau R, Camel D, et al. Modification of interdendritic convection in directional solidification by a uniform magnetic field. Acta Mater, 1998, 46: 4067–4079

    Article  Google Scholar 

  26. Liu Y S, Zhang J C, Cao S X, et al. Microstructure, crystallization, and magnetization behaviors in MnBi-Bi composites aligned by applied magnetic field. Phys Rev B, 2005, 72: 214410

    Google Scholar 

  27. Yasuda H, Ohnaka I, Yamamoto Y, et al. Alignment of BiMn crystal orientation in Bi-20 at% Mn alloys by laser melting under a magnetic field. Mater Trans, 2003, 44: 2550–2554

    Article  Google Scholar 

  28. Lin G, Yang Y S, Hua F A, et al. Solidification microstructure and deformation of stainless steel 1Cr18Ni9Ti cast by electromagnetic centrifugal casting. Acta Metallurgica Sinica (in Chinese), 2003, 39: 1233–1237

    Google Scholar 

  29. Walters D A, Casavant M J, Qin X C, et al. In-plane-aligned membranes of carbon nanotubes. Chem Phys Lett, 2001, 338: 14–20

    Article  Google Scholar 

  30. Kimura T, Ago H, Tobita M, et al. Polymer composites of carbon nanotubes aligned by a magnetic field. Adv Mater, 2002, 14: 1380–1383

    Article  Google Scholar 

  31. Choi E S, Brooks J S, Eaton D L, et al. Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J Appl Phys, 2003, 94: 6034–6039

    Article  Google Scholar 

  32. Lee G H, Huh S H, Park J W, et al. Arrays of ferromagnetic iron and cobalt nanocluster wires. J Phys Chem B, 2002, 106: 2124–2126

    Google Scholar 

  33. Hangarter C M, Myung N V. Magnetic alignment of nanowires. Chem Mater, 2005, 17: 1320–1324

    Article  Google Scholar 

  34. Niu H L, Chen Q W, Zhu H F, et al. Magnetic field-induced growth and self-assembly of cobalt nanocrystallites. J Mater Chem, 2003, 13: 1803–1805

    Article  Google Scholar 

  35. Fujiwara M, Fukui M, Tanimoto Y. Magnetic orientation of benzophenone crystals in fields up to 80.0 kOe. J Phys Chem B, 1999, 103: 2627–2630

    Article  Google Scholar 

  36. Sazaki G, Yoshida E, Komatsu H, et al. Effects of a magnetic field on the nucleation and growth of protein crystals. J Cryst Growth, 1997, 173: 231–234

    Article  Google Scholar 

  37. Torbet J. Magnetic orientation in biology: Virus structure-blood clot assembly-cell guidance. In: Proceedings of International Workshop on Materials Analysis and Processing in Magnetic Fields, Tallahassee, USA, 2004, 249–256

  38. Sakka Y, Suzuki T S, Tanabe N, et al. Alignment of titania whisker by colloidal filtration in a high magnetic field. Jpn J Appl Phys, 2002, 41: L1416–L1418

    Article  Google Scholar 

  39. Ma Y W, Xu A, Li X. Improved properties of epitaxial YNixMn1-x O3 films by annealing under high magnetic fields. Appl Phys Lett, 2006, 89: 152505

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ma Yanwei.

About this article

Cite this article

Ma, Y., Xiao, L. & Yan, L. Application of high magnetic fields in advanced materials processing. CHINESE SCI BULL 51, 2944–2950 (2006). https://doi.org/10.1007/s11434-006-2218-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-006-2218-6

Keywords

Navigation