Chinese Science Bulletin

, Volume 51, Issue 8, pp 897–901 | Cite as

Rapid dendrite growth in quaternary Ni-based alloys

  • Song Xianzheng 
  • Wang Haipeng 
  • Ruan Ying 
  • Wei Bingbo Email author


The high undercooling and rapid solidification of Ni-10%Cu-10%Fe-10%Co quaternary alloy were achieved by electromagnetic levitation and glass fluxing techniques. The maximum undercooling of 276 K (0.16TL) was obtained in the experiments. All the solidified samples are determined to be α-Ni single-phase solid solutions by DSC thermal analysis and X-ray diffraction analysis. The microstructure of the α-Ni solid solution phase transfers from dendrite to equiaxed grain with an increase in undercooling, accompanied by the grain refinement effect. When the undercooling is very large, the solute trapping effect becomes quite significant and the microsegregation is suppressed. The experimental measurement of α-Ni dendrite growth velocity indicates that it increases with undercooling according to the relation, V=8×10−2×ΔT1.2.


high undercooling dendrite growth quaternary alloy rapid solidification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bisang U, Bilgram J H. Shape of the tip and the formation of sidebranches of xenon dendrites. Phys Rev E, 1996, 54(5): 5309–5326CrossRefGoogle Scholar
  2. 2.
    Arnold C B, Aziz M J, Schwarz M, et al. Toward a parameter-free test of dendrite growth theory. Phys Rev B, 1999, 59(1): 334–343CrossRefGoogle Scholar
  3. 3.
    Hürlimann E, Trittibach R, Risang U, et al. Intergral parameter of xenon dendrites. Phys Rev E, 1992, 46(10): 6579–6595Google Scholar
  4. 4.
    Lipton J, Kurz W, Trivedi R. Rapid dendrite growth in undercooled alloys. Acta Metall, 1987, 35(4): 957–964Google Scholar
  5. 5.
    Trivedi R, Lipton J, Kurz W. Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melts. Acta Metal, 1987, 35(4): 965–970Google Scholar
  6. 6.
    Yao W J, Han X J, Wei B. The undercooling and rapid dendritic growth of Cu-Sb in drop tube. Chin Sci Bull, 2002, 47(11): 824–828Google Scholar
  7. 7.
    Yao W J, Yang C, Han X J, et al. Rapid dendritic growth in an undercooled Ni-Cu alloy under the microgravity condition. Acta Physica Sinica, 2003, 52(2): 448–453Google Scholar
  8. 8.
    Hunziker O. Theory of plane front and dendritic growth in multicomponent alloys. Acta Mater, 2001, 49: 4191–4203CrossRefGoogle Scholar
  9. 9.
    Ludwig A. The interface response-functions in multi-componental alloy solidification. Physica D, 1998, 124: 217–284CrossRefGoogle Scholar
  10. 10.
    Ruan Y, Cao C D, Wei B. The rapid growth of ternary eutectic alloy at high undercooling. Sci China Ser G-Phys, 2004, 34(4): 392–402Google Scholar
  11. 11.
    Wang N, Wei B. Thermodynamic properties of highly undercooled liquid TiAl alloy. Appl Phys Lett, 2002, 80(19): 3515–3517Google Scholar
  12. 12.
    Subramanian P R, Laughlin D E. Binary Alloy Phase Diagrams (ed. Massalski T B), 1990. 1442Google Scholar
  13. 13.
    Swartzendruber L J, Itkin V P, Alock C B. Binary Alloy Phase Diagrams (ed. Massalski T B), 1990. 1735Google Scholar
  14. 14.
    Nishizawa T, Lshida K. Binary Alloy Phase Diagrams (ed. Massalski T B), 1990. 1215Google Scholar
  15. 15.
    Xie Y Q. Lattice constants of disordered and ordered phases in Au-Cu system. Acta Metall Sinica, 1998, 12(34): 1234–1242Google Scholar
  16. 16.
    Hofmeister W H, Bayuzick R J, Robinson M B. Dual purpose pyrometer for temperature and solidification velocity measurement. Rev Sci Instrum, 1990, 61: 222CrossRefGoogle Scholar

Copyright information

© Science in China Press 2006

Authors and Affiliations

  • Song Xianzheng 
    • 1
  • Wang Haipeng 
    • 1
  • Ruan Ying 
    • 1
  • Wei Bingbo 
    • 1
    Email author
  1. 1.Department of Applied PhysicsNorthestern Polytechnical UniversityXi’anChina

Personalised recommendations