Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

An overview of adakite petrogenesis


The term adakite was originally proposed to define silica-rich, high Sr/Y and La/Yb volcanic and plutonic rocks derived from melting of the basaltic portion of oceanic crust subducted beneath volcanic arcs. It was also initially believed that adakite only occurs in convergent margins where young and thus still hot oceanic slabs are being subducted, but later studies have proposed that it also occurs in other arc settings where unusual tectonic conditions can lower the solidus of older slabs. Currently, adakite covers a range of arc rocks ranging from pristine slab melt, to adakite-peridotite hybrid melt, to melt derived from peridotite metasomatized by slab melt. Adakite studies have generated some confusions because (1) the definition of adakite combines compositional criteria with a genetic interpretation (melting of subducted basalt), (2) the definition is fairly broad and relies on chemistry as its distinguishing characteristic, (3) the use of high pressure melting experiment results on wet basalts as unequivocal proofs of slab melting and (4) the existence of adakitic rocks with chemical characteristics similar to adakites but are clearly unrelated to slab melting. Other studies have shown that adakitic rocks and a number of the previously reported a dakites are produced through melting of the mafic lower crust or ponded basaltic magma, high-pressure crystal fractionation of basaltic magma and low-pressure crystal fractionation of basaltic magma plus magma mixing processes in both arc or non-arc tectonic environments. Despite the confusing interpretations on the petrogenesis of adakite and adakitic rocks, their investigations have enriched our understanding of material recycling at subduction zones, crustal evolutionary processes and economic mineralization.

This is a preview of subscription content, log in to check access.


  1. 1.

    Defant, M. J., Drummond, M. S., Derivation of some modern arc magmas by melting of young subducted lithosphere, Nature, 1990, 347: 662–665.

  2. 2.

    Drummond, M. S., Defant, M. J., A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archaean to modern comparisons, J. Geophys. Res., 1990, 95: 21503–21521.

  3. 3.

    Martin, H., Adakitic magmas: modern analogues of Archaean granitoids, Lithos, 1999, 46: 411–429.

  4. 4.

    Smithies, R. H., The Archean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite, Earth Planet. Sci. Lett., 2000, 182: 115–125.

  5. 5.

    Kamber, B. S., Ewart, A., Collerson, K. D., Bruce, M. C. et al., Fluid-mobile trace element constraints on the role of slab melting and implications for Archean crustal growth models, Cont. Mineral. Petrol., 2002, 144: 38–56.

  6. 6.

    Condie, K. C., TTGs and adakites: are they both slab melts? Lithos, 2005, 80: 33–44.

  7. 7.

    Rollinson, H., Martin, H., Geodynamic controls on adakite, TTG and sanukitoid genesis: implications for models of crust formation, Introduction to the Special Issue, Lithos, 2005, 79: ix–xii.

  8. 8.

    Thiéblemont, D., Stein, G., Lescuyer, J. L., Epithermal and porphyry deposits: The adakite connection, Comptes Rendus de l’Académie des Sciences, Paris, 1997, 325: 103–109.

  9. 9.

    Sajona, F. G, Maury, R. C., Association of adakites with gold and copper mineralization in the Philippines, Comptes Rendus de l’Académie des Sciences, Paris, 1998, 326: 27–34.

  10. 10.

    Defant, M. J., Kepezhinskas, P., Evidence suggests slab melting in arc magmas, EOS, 2001, 82: 62–70.

  11. 11.

    Oyarzún, R., Márquez, A., Lillo, J. et al., Giant vs small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic vs normal calc-alkaline magmatism, Mineral, Deposita, 2001, 36: 794–798.

  12. 12.

    Mungall, J. E., Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits, Geology, 2002, 30: 915–918.

  13. 13.

    Armstrong, R. L., A model for the evolution of strontium and lead isotopes in a Dynamic Earth, Rev. Geophys., 1968, 6: 175–199.

  14. 14.

    Nicholls, A., Ringwood, A. E., Effect of water on olivince stability in tholeiites and the production of silica-saturate magmas in the island arc environment, J. Geol., 1973, 81: 285–300.

  15. 15.

    Sekine, T., Wyllie, P. J., Phase relationships in the system KA1-SiO4-SiO2-H2O as a model for hybridization between hydrous siliceous melts and peridotite, Contrib. Mineral. Petrol., 1982, 79: 368–374.

  16. 16.

    Marsh, B. D., Some Aleutian andesites: their nature and source, J. Geol, 1976, 84: 27–45.

  17. 17.

    Brophy, J. G., Marsh, B. D., On the origin of high-alumina arc basalt and the mechanics of melt extraction, J. Petrol., 1986, 27: 763–789.

  18. 18.

    Davidson, J. P., Deciphering mantle and crustal signatures in subduction zone magmatism, in, Subduction: Top to Bottom (eds. Bebout, G. E. et al.), Am. Geophys. U. Geophys. Mono., 1996, 96: 251–262.

  19. 19.

    Tatsumi, Y., Hamilton, D. L., Nesbitt, R. W., Chemical characteristics of fluid phase from the subducted lithosphere: evidence from high-pressure experiments and natural rocks, J. Volcanol. Geotherm. Res., 1986, 29: 293–309.

  20. 20.

    Gill, J. B., Orogenic Andesites and Plate Tectonics, Berlin, Springer-Verlag, 1981, 358.

  21. 21.

    Hawkesworth, C. J., Gallagher, K., Hergt, J. M. et al., Mantle and slab contributions in arc magmas, Ann. Rev. Earth Planet. Sci., 1993, 21: 175–204.

  22. 22.

    Perfit, M. R., Gust, D. A., Bence, A. E. et al., Chemical characteristics of island arc basalts: implications for mantle sources, Chem. Geol., 1980, 30: 227–256.

  23. 23.

    Woodhead, J., Eggins, S., Gamble, J., High field strength and transition element systematics in island and back-arc basin basalts: evidence for multi-phase extraction and a depleted mantle wedge, Earth Planet. Sci. Lett., 1993, 114: 491–504.

  24. 24.

    Othman, D. B., White, W. M., Patchett, J., Geochemistry of marine sediments, island arc magma genesis and crust-mantle recycling, Earth Planet. Sci. Lett., 1989, 94: 1–21.

  25. 25.

    Elliot, T., Plank, T., Zindler, A. et al., Element transport from slab to volcanic front at the Mariana arc, J. Geophys. Res., 1997, 102: 14991–15019.

  26. 26.

    Plank, T., Langmuir, C., The chemical composition of subducting sediment and its consequences fro the crust and mantle, Chem. Geol., 1998, 145: 325–394.

  27. 27.

    Kay, R. W., Aleutian magnesian andesites: melts from subducted Pacific Ocean crust, J. Volcanol. Geotherm. Res., 1978, 4: 117–132.

  28. 28.

    Condie, K. C., Swenson, D. H., Compositional variations in three Cascade stratovolcanoes: Jefferson, Rainier and Shasta, Bull. Volcanol., 1973, 37: 205–320.

  29. 29.

    Lopez-Escobar, L., Petrology and chemistry of volcanic rocks of the Southern Andes, in Andean Magmatism, Chemical and Isotopic Constraints (eds. Harmon R. S., Barreiro, B. A.), Shiva Geology Series, 1984, 47–71.

  30. 30.

    Saunders, A. D., Rogers, G., Marriner, G. F. et al., Geochemistry of Cenozoic volcanic rocks, Baja California, Mexico: Implications for the petrogenesis of post-subduction magmas, J. Vol. Geotherm. Res., 1987, 32: 223–245.

  31. 31.

    Defant, M. J., Richerson, M., De Boer, J. Z. et al., Dacite genesis via both slab melting and differentiation: petrogenesis of La Yeguada volcanic complex, Panama. J. Petrol., 1991, 32: 1101–1142.

  32. 32.

    Defant, M. J., Jackson, T. E., Drummond, M. S. et al., The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview, J. Geol. Soc., 1992, 149: 569–579.

  33. 33.

    Sajona, F. G., Maury, R. C., Bellon, H. et al., Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines, Geology, 1993, 21: 1007–1010.

  34. 34.

    Sajona, F. G., Bellon, H., Maury, R. C. et al., Magmatic response to abrupt changes in geodynamic settings: Pliocene-Quaternary calc-alkaline lavas and Nb enriched basalts of Leyte and Mindanao (Philippines), Tectonophys., 1994, 237: 47–72.

  35. 35.

    Drummond, M. S., Defant, M. J., Kepezhinskas, P. K., The petrogenesis of slab derived trondhjemite-tonalite-dacite adakite magmas, Trans. R. Soc. Edinburgh: Earth Sci., 1996, 87: 205–216.

  36. 36.

    Kepezhinskas, P. K., Defant, M. J., Drummond, M. S., Na-metasomatism in the island arc mantle by slab melt-peridotite interaction: evidence from mantle xenoliths in the north Kamchatka arc, J. Petrol., 1995, 36: 1505–1527.

  37. 37.

    Castillo, P. R., Janney, P. E., Solidum, R., Petrology and geochemistry of Camiguin Island, southern Philippines: insights into the source of adakite and other lavas in a complex arc tectonic setting, Contrib. Mineral. Petrol., 1999, 134: 33–51.

  38. 38.

    Atherton, M. P., Petford, N., Generation of sodium-rich magmas from newly underplated basaltic crust, Nature, 1993, 362: 144–146.

  39. 39.

    Arculus, R. J., Lapierrre, H., Jaillard, E., Geochemical window into subduction and accretion processes: Raspas metamorphic complex, Ecuador, Geology, 1999, 27: 547–550.

  40. 40.

    Yumul, G. P. Jr., Dimalanta, C. B., Faustino, D. V. et al., Silicic arc volcanism and lower crust melting: an example from the central Luzon, Philippines, J. Geol., 1999, 154: 13–14.

  41. 41.

    Xu, J., Shinjio, R., Defant, M. J. et al., Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 2002, 12: 1111–1114.

  42. 42.

    Macpherson, C. G., Dreher, S. T., Thirwall, M. F., Adakites without slab melting: high pressure processing of basaltic island arc magma, Mindanao, the Philippines, Earth Planet. Sci. Lett., in press.

  43. 43.

    Beard, J. S., Lofgren, G. E., Effect of water on the composition of partial melts of greenstones and amphibolites, Science, 1989, 144: 195–197.

  44. 44.

    Beard, J. S., Lofgren, G. E., Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 kb., J. Petrol., 1991, 32: 465–501.

  45. 45.

    Rapp, R. P., Watson, E. B., Miller, C. F., Partial melting of amphibolite, eclogite and the origin of Archaean trondhjemites and tonalites, Precambrian Res., 1991, 51: 1–25.

  46. 46.

    Rushmer, T., Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions, Contrib. Mineral. Petrol., 1991, 107: 41–59.

  47. 47.

    Winther, T. K., Newton, R. C., Experimental melting of anhydrous low-K tholeiite: evidence on the origin of Archaean cratons, Bull. Geol. Soc. Den., 1991, 39.

  48. 48.

    Wolf, M. B., Wyllie, P. J., Dehydration-melting of solid amphibolite at 10 kbar: textural development, liquid interconnectivity and applications to the segregation of magmas, Contrib. Mineral. Petrol., 1991, 44: 151–179.

  49. 49.

    Sen, C., Dunn, T., Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites, Contrib. Mineral. Petrol., 1994, 117: 394–409.

  50. 50.

    Schiano, P., Clochiatti, R., Shimizu, N. et al., Hydrous, silica-rich melts in the sub-arc mantle and their relationships with erupted arc lavas, Nature, 1995, 377: 595–600.

  51. 51.

    Sorensen, S. S., Petrology of amphibolite-facies mafic and ultramafic rocks from Catalina schist, southern California: metamorphism and migmatisation in a subduction zone metamorphic setting, J. Met. Geol., 1988, 6: 405–435.

  52. 52.

    Sorensen, S. S., Barton, M. D., Metasomatism and partial melting in a subduction complex: Catalina schist, southern California, Geology, 1987, 15: 115–118.

  53. 53.

    Sorensen, S. S., Grossman, J. N., Enrichment in trace elements in garnet amphibolites from a paleo-subduction zone: Catalina schist, southern California, Geochim. Cosmochim. Acta, 1989, 53: 3155–3177.

  54. 54.

    Bebout, G. E., Barton, M. D., Metasomatism during subduction: products and possible paths in the Catalina schist, California, Chem. Geol., 1993, 108: 61–92.

  55. 55.

    Yogodzinski, G. M., Kelemen, P. B., Slab melting in the Aleutians: Implication of an ion probe study of clinopyroxene in primitive adakite and basalt, Earth Planet. Sci. Lett., 1998, 158: 53–65.

  56. 56.

    Peacock, S. M., Rushmer, T., Thompson, A. B., Partial melting of subducting oceanic crust, Earth Planet. Sci. Lett., 1994, 121: 227–244.

  57. 57.

    Tatsumi, Y., Ishizaka, K., Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, I. Petrographical and chemical characteristics, Earth Planet. Sci. Lett., 1982, 60: 293–304.

  58. 58.

    Tatsumi, Y., Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction: generation of high-Mg andesites in the Setouchi volcanic belt, Southern Japan, Geology, 2001, 29: 323–326.

  59. 59.

    Rogers, G., Saunders, A., Magnesian andesites from Mexico, Chile and the Aleutian Islands: implications for magmatism associated with ridge-trench collision, in Boninites (ed. Crawford, A.J.), Unwin Hyman, London, 1989, 416–445.

  60. 60.

    Smith, D. R., Leeman, W. P., Petrogenesis of Mount St. Helens dacitic magmas, J. Geophys. Res., 1987, 92: 10313–10334.

  61. 61.

    Sajona, F. G, Maury, R. C., Pubellier, M. et al., Magmatic source enrichment by slab-derived melts in a young post-collision setting, central Mindanao (Philippines), Lithos, 2000, 54: 173–206.

  62. 62.

    Yogodzinski, G. M., Lees, J. M., Churikova, T. G. et al., Geochemical evidence for the melting of subducting oceanic lithosphere at plates edges, Nature, 2001, 409: 500–504.

  63. 63.

    Calmus, T., Aguillon-Robles, A., Maury, R. C. et al., Spatial and temporal evolution of basalts and magnesian andesites (bajaites) from Baja California, Mexico: the role of slab melts, Lithos, 2003, 66: 77–105.

  64. 64.

    Gutscher, M.-A., Maury, F., Eissen, J.-P. et al., Can slab melting be caused by flat subduction? Geology, 2000, 28: 535–538.

  65. 65.

    Beate, B., Monzier, M., Spikings, R. et al., Mio-Pliocene adakite generation related to flat subduction in southern Ecuador: the Quimsacocha volcanic center, Earth Planet. Sci. Lett., 2001, 192: 561–570.

  66. 66.

    Bourdon, E., Eissen, J.-P., Monzier, M. et al., Adakite-like lavas from Antisana volcano (Ecuador): Evidence from slab melt metasomatism beneath the Andean Northern volcanic zone, J. Petrol., 2002, 43: 99–217.

  67. 67.

    Xu, J., Wang, Q., Yu, X.Y., Geochemistry of high-magnesian andesites and adakitic andesite from the Sanchazi block of the Mian-Lue ophiolitic melange in the Qinling Mountains, central China: Evidence of partial melting of the subducted Plaeo-Tethyan crust, Geochem. J., 2000, 34: 359–377.

  68. 68.

    Yogodzinski, G. M., Kay, R. W., Volynets, O. N. et al., Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge, Geol. Soc. Am. Bull. 1995, 107: 505–519.

  69. 69.

    Rapp, R. P., Shimizu, N., Norman, M. D. et al., Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa, Chem. Geol., 1999, 160: 335–356.

  70. 70.

    Martin, H., Smithies, R. H., Rapp, R. et al., An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution, Lithos, 2005, 79: 1–24.

  71. 71.

    Wang, Q., Zhao, Z., Bai, Z. et al., Carboniferous adakites and Nb-enriched arc basaltic rocks association in the Alataw Mountains, north Xinjiang: Interactions between slab melt and mantle peridotite and implications for crustal growth, Chinese Sci. Bull., 2003, 48: 2108–2115.

  72. 72.

    Aguillón-Robles, A., Caimus, T., Bellon, H. et al., Late Miocene adakite and Nb-enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below southern Baja California, Geology, 2001, 29: 531–534.

  73. 73.

    Wallace, P. J., Carmichael, I. S. E., Quaternary volcanism near the Valley of Mexico: implications for subduction zone magmatism and the effects of crustal thickness variations on primitive magma compositions, Contrib. Mineral. Petrol., 1999, 135: 291–314.

  74. 74.

    Castillo, P. R., Solidum, R. U., Punongbayan, R. S., Origin of high field strength element enrichment in the Sulu Arc, southern Philippines, revisited, Geology, 2002, 30: 707–710.

  75. 75.

    Rudnick, R. L., Making continental continental crust, Nature, 1995, 378: 571–578.

  76. 76.

    Petford, N., Atherton, M., Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru, J. Petrol., 1996, 37: 1491–1521.

  77. 77.

    Xiong, X. L., Li, X. H., Xu, J. F. et al., Extremely high-Na adakite-like magmas derived from alkali-rich basaltic underplate: The Late Cretaceous Zhantang andesites in the Huichang Basin, SE China, Geochem. J., 2001, 37: 233–252.

  78. 78.

    Chung, S. L., Liu, D. Y., Ji, J. Q. et al., Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet, Geology, 2003, 31: 1021–1024.

  79. 79.

    Hou, Z. Q., Gao, Y. F., Qu, X. M. et al., Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet, Earth Planet. Sci. Lett., 2004, 220: 139–155.

  80. 80.

    Wang, Q., McDermott, F., Xu, J. F. et al., Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting, Geology, 2005, 33: 465–468.

  81. 81.

    Kay, R. W., Kay, S. M. Delamination and delamination magmatism, Tectonophys., 1993, 219: 177–189.

  82. 82.

    Kay, R. W., Kay, S. M., Andean adakites: Three ways to make them, Acta Petrologica Sinica, 2002, 18: 303–311.

  83. 83.

    Gao, S., Rudnick, R. L., Yuan, H. L. et al., Recycling lower continental crust in the North China craton, Nature, 2004, 432: 892–897.

  84. 84.

    Wang, Q., Xu, J. F., Zhao, Z. H. et al., Cretace ous high-potassium intrusive rocks in the Yueshan-Hongzhen area of east China: Adakites in an extensional tectonic regime within a continent, Geochem. J., 2004, 38: 417–434.

  85. 85.

    Zhang, Q., Qian, Q., Wang, E. et al., An east China plateau in mid-Late Yanshanian period: Implications for adakites, Chinese J. Geol. (in Chinese with English abstract), 2001, 36: 248–255.

  86. 86.

    Zhang, Q., Wang, Y., Qian, Q. et al., The characteristics and tectonic-metallogenic significance of the adakites in Yanshan period from eastern China, Acta Petrol. Sinica (in Chinese with English abstract), 2001, 17: 236–244.

  87. 87.

    Defant, M. J., Xu, J. F., Kepezhinskas, P. et al., Adakites: Some variations on a theme, Acta Petrol. Sinica, 2002, 18: 129–142.

  88. 88.

    Xu, J., Mei, H., Yu, X. et al., Adakites related to subduction in the northern margin of Jungar arc for the Late Paleozoic: Products of slabmelting, Chinese Sci. Bull., 2001, 46: 1312–1316.

  89. 89.

    Qu, X.-M., Hou, Z.-Q., Li, Y.-G., Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau, Lithos, 2004, 74: 131–148.

  90. 90.

    Müntener, O., Kelemen, P. B., Grove, T. L., The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study, Contrib. Mineral. Petrol., 2001, 141: 643–658.

  91. 91.

    Dreher, S. T., Macpherson, C. G., Pearson, D. G. et al., Re-Os isotope studies of Mindanao adakites: Implications for sources of metals and melts, Geology, 2005, 33: 957–960.

  92. 92.

    Garrison, J. M., Davidson, J. P., Dubious case for slab melting in the northern volcanic zone of the Andes, Geology, 2003, 31: 565–568.

  93. 93.

    Solidum, R. U., Castillo, P. R., Hawkins, J. W., Geochemistry of lavas from Negros Arc, west central Philippines: insights into the contribution from the subducting slab, Geochem. Geophys. Geos., 2003, 4: 1–26.

  94. 94.

    Yaxley, G. M., Green, D. H., Reactions between eclogite and peridotite; mantle refertilisation by subduction of oceanic crust, Bull. Suisse Mineral. Petrogr., 1998, 78: 243–255.

  95. 95.

    Prouteau, G., Scaillet, B., Pichavant, M. et al., Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust, Nature, 2001, 410: 197–200.

  96. 96.

    Myers, J. D., Frost, C. D., A petrologic investigation of the Adak volcanic center, central Aleutian arc, Alaska, J. Volcanol. Geotherm. Res., 1994, 60: 109–146.

  97. 97.

    Lopez-Escobar, L., Frey, F. A., Vergara, M., Andesites and high-alumina basalts from Central South Chile high Andes: geochemical evidences bearing to their petrogenesis, Contrib. Mineral. Petrol., 1977, 63: 199–228.

  98. 98.

    Martin, H., Archaean and modern granitoids as indicators of changes in geodynamic processes, Rev. Bras. Geocienc., 1987, 17: 360–365.

  99. 99.

    Futa, K., Stern, C. R., Sr and Nd isotopic and trace element compositions of quaternary volcanic centres of the southern Andes, Earth Planet. Sci. Lett., 1988, 88: 253–262.

  100. 100.

    Kay, S. M., Ramos, V.A., Marquez, M., Evidence in Cerro Pampa volcanic rocks of slab melting prior to ridge trench collision in southern South America, J. Geol., 1993, 101: 703–714.

  101. 101.

    Bourgois, J., Lagabrielle, Y., Le Moigne, J. et al., Preliminary results on a field study of the Taitao ophiolite Southern Chile: implications for the evolution of the Chile Triple Junction, Ophioliti, 1994, 18: 113–129

  102. 102.

    Guivel, C., Lagabrielle, Y., Bourgois, J. et al., Cotten, J., Magmatic reponses to active spreading ridge subduction: multiple magma sources in the Taitao Peninsula region 468–478 S, Chile triple junction, Third International Symposium on Andean geodynamics ISAG 96 Saint-Malo, France, ORSTOM editeur, 1996, 575–578.

  103. 103.

    Stern, C. R., Kilian, R., Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Austral Volcanic Zone, Contrib. Mineral. Petrol., 1996, 123: 263–281.

  104. 104.

    Sigmarsson, O., Martin, H., Knowles, J., Melting of a subducting oceanic crust in Austral Andean lavas from U-series disequilibria, Nature, 1998, 394: 566–569.

  105. 105.

    Defant, M. J., Drummond, M. S., Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc, Geology, 1993, 21: 541–550.

  106. 106.

    Monzier, M., Robin, C., Samaniego, P. et al., Arnaud, N., Sangay volcano, Ecuador: Structural development, present activity and petrology, J. Volc. Geotherm. Res., 1999, 90: 49–79.

  107. 107.

    Samaniego, P., Martin, H., Robin, C. et al., Transition from calc-alkalic to adakitic magmatism at Cayambevolcano, Ecuador: insights into slab melts and mantle wedge interactions, Geology, 2002, 30: 967–970.

  108. 108.

    Morris, P. A., Slab melting as an explanation of Quaternary volcanism and aseismcity in Southwest Japan, Geology, 1995, 23: 395–398.

  109. 109.

    Kepezhinskas, P. K., Origin of the hornblende andesites of northern Kamchatka, Int. Geol. Rev., 1989, 31: 246–252.

  110. 110.

    Honthaas, C., Bellon, H., Kepezhinskas, P. K. et al., Nouvelles datations 40Kr/40Ar du magmatisme cretace quaternaire du Kamchatka du Nord Russie, C. R. Acad. Sci. Paris, 1990, 320: 197–204.

  111. 111.

    Kepezhinskas, P. K., Defant, M. J., Drummond, M. S., Progressive enhancement of island arc mantle by melt-peridotite interaction inferred from Kamchatka adakties, Geochim. Cosmochim. Acta, 1996, 60: 1217–1229.

  112. 112.

    Maury, R. C., Sajona, F. G., Pubellier, M. et al., Fusion de la croute oceanique dans les zones de subduction r collision recentes: l’exemple de Mindanao, Philippines, Bull. Soc. Geol. France, 1996, 167: 579–595.

  113. 113.

    Ma, C., Li, Z., Ehlers, C. et al., A post-collisional magmatic plumbing system: Mesozoic granitiod plutons from the Dabie high-pressure and ultrahigh-pressure metamorphic zone, east-central China, Lithos., 1998, 45: 431–457.

  114. 114.

    GEOROC electronic database, Max Planck Institut fur Chemie, Mainz, Germany,

Download references

Author information

About this article

Cite this article

Castillo, P.R. An overview of adakite petrogenesis. CHINESE SCI BULL 51, 257–268 (2006).

Download citation


  • adakite
  • slab melting
  • metasomatism
  • eclogite
  • amphibolite
  • Archean TTG
  • magnesian andesite
  • high-Nb basalt
  • subduction zone
  • arc magmatism