Skip to main content
Log in

Quantized bound states around a vortex in anisotropic superconductors

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The bound states around a vortex in anisotropic superconductors is a longstanding yet important issue. In this work, we develop a variational theory on the basis of the Andreev approximation to obtain the energy levels and wave functions of the low-energy quantized bound states in superconductors with anisotropic pairing on arbitrary Fermi surface. In the case of circular Fermi surface, the effective Schrödinger equation yielding the bound state energies gets back to the theory proposed by Volovik and Kopnin many years ago. Our generalization here enables us to prove the equidistant energy spectrum inside a vortex in a broader class of superconductors. More importantly, we are now able to obtain the wave functions of these bound states by projecting the quasiclassical wave function on the eigenmodes of the effective Schrödinger equation, going beyond the quasiclassical Eilenberger results, which, as we find, are sensitive to the scattering rate. For the case of isotropic Fermi surface, the spatial profile of the low-energy local density of states is dominated near the vortex center and elongates along the gap antinode directions, in addition to the ubiquitous Friedel oscillation arising from the quantum inteference neglected in the Eilenberger theory. Moreover, as a consequence of the pairing anisotropy, the quantized wave functions develop a peculiar distribution of winding number, which reduces stepwise towards the vortex center. Our work provides a flexible way to study the vortex bound states in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Caroli, and P.-G. De Gennes, J. Matricon Phys. Lett. 9, 307 (1964).

    Article  Google Scholar 

  2. P.-G. de Gennes, Superconductivity of Metals and Alloys (Westview Press, Boulder, 1999).

    Google Scholar 

  3. G. E. Volovik, Jetp Lett. 70, 609 (1999).

    Article  ADS  Google Scholar 

  4. N. Read, and D. Green, Phys. Rev. B 61, 10267 (2000).

    Article  ADS  Google Scholar 

  5. D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).

    Article  ADS  Google Scholar 

  6. A. Y. Kitaev, Ann. Phys. 303, 2 (2003).

    Article  ADS  Google Scholar 

  7. C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).

    Article  ADS  Google Scholar 

  8. S. D. Sarma, M. Freedman, and C. Nayak, npj Quantum Inf. 1, 15001 (2015).

    Article  ADS  Google Scholar 

  9. N. Hayashi, M. Ichioka, and K. Machida, Phys. Rev. Lett. 77, 4074 (1996).

    Article  ADS  Google Scholar 

  10. N. Schopohl, and K. Maki, Phys. Rev. B 52, 490 (1995).

    Article  ADS  Google Scholar 

  11. M. Ichioka, N. Hayashi, N. Enomoto, and K. Machida, Phys. Rev. B 53, 15316 (1996).

    Article  ADS  Google Scholar 

  12. M. Franz, and Z. Tešanović, Phys. Rev. Lett. 80, 4763 (1998).

    Article  ADS  Google Scholar 

  13. G. E. Volovik, JETP Lett. 58, 25 (1993).

    Google Scholar 

  14. L. Fu, and E. Berg, Phys. Rev. Lett. 105 097001 (2010).

    Article  ADS  Google Scholar 

  15. L. Fu, Phys. Rev. B 90, 100509 (2014).

    Article  ADS  Google Scholar 

  16. W. C. Bao, Q. K. Tang, D. C. Lu, and Q. H. Wang, Phys. Rev. B 98, 054502 (2018).

    Article  ADS  Google Scholar 

  17. L. Yang, and Q. H. Wang, New J. Phys. 21, 093036 (2019).

    Article  ADS  Google Scholar 

  18. Y. Nagai, J. Phys. Soc. Jpn. 83, 063705 (2014).

    Article  ADS  Google Scholar 

  19. D. L. Fang, J. S. Liu, and Y. K. Cui, Phys. C-Supercond. Appl. 591, 1353963 (2021).

    Article  ADS  Google Scholar 

  20. H. F. Hess, R. B. Robinson, and J. V. Waszczak, Phys. Rev. Lett. 64, 2711 (1990).

    Article  ADS  Google Scholar 

  21. C. L. Song, Y. L. Wang, P. Cheng, Y. P. Jiang, W. Li, T. Zhang, Z. Li, K. He, L. Wang, J. F. Jia, H. H. Hung, C. Wu, X. Ma, X. Chen, and Q. K. Xue, Science 332, 1410 (2011).

    Article  ADS  Google Scholar 

  22. T. Hanaguri, K. Kitagawa, K. Matsubayashi, Y. Mazaki, Y. Uwatoko, and H. Takagi, Phys. Rev. B 85, 214505 (2012).

    Article  ADS  Google Scholar 

  23. S. Kaneko, K. Matsuba, M. Hafiz, K. Yamasaki, E. Kakizaki, N. Nishida, H. Takeya, K. Hirata, T. Kawakami, T. Mizushima, and K. Machida, J. Phys. Soc. Jpn. 81, 063701 (2012).

    Article  ADS  Google Scholar 

  24. Z. Du, D. Fang, Z. Wang, Y. Li, G. Du, H. Yang, X. Zhu, and H. H. Wen, Sci. Rep. 5, 9408 (2015).

    Article  ADS  Google Scholar 

  25. W. L. Wang, Y. M. Zhang, Y. F. Lv, H. Ding, L. Wang, W. Li, K. He, C. L. Song, X. C. Ma, and Q. K. Xue, Phys. Rev. B 97, 134524 (2018).

    Article  ADS  Google Scholar 

  26. R. Tao, Y. J. Yan, X. Liu, Z. W. Wang, Y. Ando, Q. H. Wang, T. Zhang, and D. L. Feng, Phys. Rev. X 8, 041024 (2018).

    Google Scholar 

  27. M. Chen, X. Chen, H. Yang, Z. Du, X. Zhu, E. Wang, and H. H. Wen, Nat. Commun. 9, 970 (2018).

    Article  ADS  Google Scholar 

  28. M. Chen, X. Chen, H. Yang, Z. Du, and H. H. Wen, Sci. Adv. 4, eaat1084 (2018).

    Article  ADS  Google Scholar 

  29. Y. Yuan, J. Pan, X. Wang, Y. Fang, C. Song, L. Wang, K. He, X. Ma, H. Zhang, F. Huang, W. Li, and Q. K. Xue, Nat. Phys. 15, 1046 (2019).

    Article  Google Scholar 

  30. T. Zhang, W. Bao, C. Chen, D. Li, Z. Lu, Y. Hu, W. Yang, D. Zhao, Y. Yan, X. Dong, Q. H. Wang, T. Zhang, and D. Feng, Phys. Rev. Lett. 126, 127001 (2021).

    Article  ADS  Google Scholar 

  31. X. Chen, W. Duan, X. Fan, W. Hong, K. Chen, H. Yang, S. Li, H. Luo, and H. H. Wen, Phys. Rev. Lett. 126, 257002 (2021).

    Article  ADS  Google Scholar 

  32. F. Gygi, and M. Schlüter, Phys. Rev. B 43, 7609 (1991).

    Article  ADS  Google Scholar 

  33. G. E. Volovik, The Universe in a Helium Droplet (Oxford University Press, Oxford, 2003).

    Google Scholar 

  34. G. E. Volovik, Phys. Rep. 351, 195 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  35. N. B. Kopnin, Theory of Nonequilibrium Superconductivity (Oxford University Press, Oxford, 2001)

    Book  Google Scholar 

  36. A. F. Andreev, Sov. Phys. JETP 46, 1823 (1964).

    Google Scholar 

  37. G. Eilenberger, Z. Physik 214, 195 (1968).

    Article  ADS  Google Scholar 

  38. N. Schopohl, arXiv: 9804064.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da Wang or Qiang-Hua Wang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Da Wang thanks N. Schopohl for bringing us ref. [38] about technical details in solving the Eilenberger equation. This work was supported by the National Key R&D Program of China (Grant No. 2022YFA1403201), and the National Natural Science Foundation of China (Grant Nos. 12274205, 12374147, 92365203, and 11874205).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, K., Wang, D. & Wang, QH. Quantized bound states around a vortex in anisotropic superconductors. Sci. China Phys. Mech. Astron. 67, 267412 (2024). https://doi.org/10.1007/s11433-023-2353-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2353-6

Navigation