Skip to main content
Log in

Dynamical switchable quantum nonreciprocity induced by off-resonant chiral two-photon driving

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Optical nonreciprocity, which refers to the direction-dependent emission, scattering and absorption of photons, plays a very important role in quantum engineering and quantum information processing. Here, we propose an all-optical approach to achieve the optical dynamical switchable quantum nonreciprocity by an off-resonant chiral two-photon driving in a single microring cavity, which differs from the conventional nonreciprocal schemes. It is shown that the optical field with time-dependent statistical properties can be generated and the nonreciprocity flips periodically, with switchable photon blockade and photon-induced tunneling effects. We find that the dynamical system is robust and immune to the parameter variations, which loosens the parameter range of system. Meanwhile, the time window for one-way quantum information is sufficiently wide and tunable. Our work opens a new idea for the current quantum nonreciprocal research, which can facilitate a memory functionality and be used for future in-memory superconducting quantum compute. The other nonreciprocal quantum devices, i.e., dynamical switchable nonreciprocal squeezing and entanglement, may be inspired by our method, which is expected to have important applications in future quantum technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, Nat. Photon. 7, 579 (2013).

    Article  ADS  Google Scholar 

  2. C. Caloz, A. Alù, S. Tretyakov, D. Sounas, K. Achouri, and Z. L. Deck-Léger, Phys. Rev. Appl. 10, 047001 (2018), arXiv: 1804.00235.

    Article  ADS  Google Scholar 

  3. H. J. Kimble, Nature 453, 1023 (2008), arXiv: 0806.4195.

    Article  ADS  Google Scholar 

  4. Y. P. Wang, J. W. Rao, Y. Yang, P. C. Xu, Y. S. Gui, B. M. Yao, J. Q. You, and C. M. Hu, Phys. Rev. Lett. 123, 127202 (2019), arXiv: 1908.07907.

    Article  ADS  Google Scholar 

  5. M. Liu, C. Zhao, Y. Zeng, Y. Chen, C. Zhao, and C. W. Qiu, Phys. Rev. Lett. 127, 266101 (2021).

    Article  ADS  Google Scholar 

  6. Y. Ren, S. Ma, J. Xie, X. Li, M. Cao, and F. Li, Phys. Rev. A 105, 013711 (2022).

    Article  ADS  Google Scholar 

  7. Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, Nat. Mater. 18, 783 (2019).

    Article  ADS  Google Scholar 

  8. P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, Nature 541, 473 (2017), arXiv: 1608.00446.

    Article  ADS  Google Scholar 

  9. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, Nature 461, 772 (2009).

    Article  ADS  Google Scholar 

  10. A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, Phys. Rev. Lett. 105, 126804 (2010).

    Article  ADS  Google Scholar 

  11. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, Nat. Photon. 5, 758 (2011).

    Article  ADS  Google Scholar 

  12. T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, Phys. Rev. Lett. 101, 113902 (2008), arXiv: 0802.3192.

    Article  ADS  Google Scholar 

  13. Z. Guo, F. Wu, C. Xue, H. Jiang, Y. Sun, Y. Li, and H. Chen, J. Appl. Phys. 124, 103104 (2018), arXiv: 1804.04805.

    Article  ADS  Google Scholar 

  14. B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10, 394 (2014), arXiv: 1308.4564.

    Article  Google Scholar 

  15. Q. T. Cao, H. Wang, C. H. Dong, H. Jing, R. S. Liu, X. Chen, L. Ge, Q. Gong, and Y. F. Xiao, Phys. Rev. Lett. 118, 033901 (2017), arXiv: 1607.01459.

    Article  ADS  Google Scholar 

  16. S. Zhang, Y. Hu, G. Lin, Y. Niu, K. Xia, J. Gong, and S. Gong, Nat. Photon 12, 744 (2018).

    Article  ADS  Google Scholar 

  17. K. Xia, F. Nori, and M. Xiao, Phys. Rev. Lett. 121, 203602 (2018).

    Article  ADS  Google Scholar 

  18. P. Yang, X. Xia, H. He, S. Li, X. Han, P. Zhang, G. Li, P. Zhang, J. Xu, Y. Yang, and T. Zhang, Phys. Rev. Lett. 123, 233604 (2019), arXiv: 1906.00123.

    Article  ADS  Google Scholar 

  19. E. Z. Li, D. S. Ding, Y. C. Yu, M. X. Dong, L. Zeng, W. H. Zhang, Y. H. Ye, H. Z. Wu, Z. H. Zhu, W. Gao, G. C. Guo, and B. S. Shi, Phys. Rev. Res. 2, 033517 (2020).

    Article  Google Scholar 

  20. L. Tang, J. Tang, H. Wu, J. Zhang, M. Xiao, and K. Xia, Photon. Res. 9, 1218 (2021).

    Article  Google Scholar 

  21. L. Tang, J. Tang, M. Chen, F. Nori, M. Xiao, and K. Xia, Phys. Rev. Lett. 128, 083604 (2022), arXiv: 2110.05016.

    Article  ADS  Google Scholar 

  22. M. Hafezi, and P. Rabl, Opt. Express 20, 7672 (2012), arXiv: 1110.3538.

    Article  ADS  Google Scholar 

  23. Z. Shen, Y. L. Zhang, Y. Chen, C. L. Zou, Y. F. Xiao, X. B. Zou, F. W. Sun, G. C. Guo, and C. H. Dong, Nat. Photon. 10, 657 (2016), arXiv: 1604.02297.

    Article  ADS  Google Scholar 

  24. F. Ruesink, M. A. Miri, A. Alù, and E. Verhagen, Nat. Commun. 7, 13662 (2016), arXiv: 1607.07180.

    Article  ADS  Google Scholar 

  25. S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. U. Hassan, H. Jing, F. Nori, D. N. Christodoulides, and T. Carmon, Nature 558, 569 (2018).

    Article  ADS  Google Scholar 

  26. R. Huang, A. Miranowicz, J. Q. Liao, F. Nori, and H. Jing, Phys. Rev. Lett. 121, 153601 (2018), arXiv: 1807.10084.

    Article  ADS  Google Scholar 

  27. B. Li, R. Huang, X. Xu, A. Miranowicz, and H. Jing, Photon. Res. 7, 630 (2019).

    Article  Google Scholar 

  28. H. Lira, Z. Yu, S. Fan, and M. Lipson, Phys. Rev. Lett. 109, 033901 (2012).

    Article  ADS  Google Scholar 

  29. N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, Nat. Phys. 10, 923 (2014).

    Article  Google Scholar 

  30. D. L. Sounas, and A. Alù, Nat. Photon. 11, 774 (2017).

    Article  ADS  Google Scholar 

  31. K. Y. Bliokh, D. Smirnova, and F. Nori, Science 348, 1448 (2015), arXiv: 1502.03319.

    Article  ADS  MathSciNet  Google Scholar 

  32. K. Y. Bliokh, and F. Nori, Phys. Rep. 592, 1 (2015), arXiv: 1504.03113.

    Article  ADS  MathSciNet  Google Scholar 

  33. K. Xia, G. Lu, G. Lin, Y. Cheng, Y. Niu, S. Gong, and J. Twamley, Phys. Rev. A 90, 043802 (2014), arXiv: 1407.3080.

    Article  ADS  Google Scholar 

  34. M. Scheucher, A. Hilico, E. Will, J. Volz, and A. Rauschenbeutel, Science 354, 1577 (2016), arXiv: 1609.02492.

    Article  ADS  Google Scholar 

  35. L. Bo, X. F. Liu, C. Wang, and T. J. Wang, Front. Phys. 18, 12305 (2023).

    Article  ADS  Google Scholar 

  36. Y. F. Jiao, S. D. Zhang, Y. L. Zhang, A. Miranowicz, L. M. Kuang, and H. Jing, Phys. Rev. Lett. 125, 143605 (2020), arXiv: 2002.11148.

    Article  ADS  Google Scholar 

  37. S. S. Chen, S. S. Meng, H. Deng, and G. J. Yang, Annalen der Physik 533, 2000343 (2021).

    Article  ADS  Google Scholar 

  38. Q. Guo, K. X. Zhou, C. H. Bai, Y. Zhang, G. Li, and T. Zhang, Phys. Rev. A 108, 033515 (2023).

    Article  ADS  Google Scholar 

  39. M. Ishibashi, Y. Shiota, T. Li, S. Funada, T. Moriyama, and T. Ono, Sci. Adv. 6, eaaz6931 (2020).

    Article  ADS  Google Scholar 

  40. T. Golod, and V. M. Krasnov, Nat. Commun. 13, 3658 (2022), arXiv: 2205.12196.

    Article  ADS  Google Scholar 

  41. K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, Nature 436, 87 (2005), arXiv: quant-ph/0507065.

    Article  ADS  Google Scholar 

  42. C. Hamsen, K. N. Tolazzi, T. Wilk, and G. Rempe, Phys. Rev. Lett. 118, 133604 (2017), arXiv: 1608.01571.

    Article  ADS  Google Scholar 

  43. Q. Bin, X. Y. Lu, S. W. Bin, and Y. Wu, Phys. Rev. A 98, 043858 (2018), arXiv: 1811.04405.

    Article  ADS  Google Scholar 

  44. H. Z. Shen, Q. Wang, J. Wang, and X. X. Yi, Phys. Rev. A 101, 013826 (2020).

    Article  ADS  Google Scholar 

  45. C. Zhao, X. Li, S. Chao, R. Peng, C. Li, and L. Zhou, Phys. Rev. A 101, 063838 (2020), arXiv: 2009.09871.

    Article  ADS  Google Scholar 

  46. D. Y. Wang, C. H. Bai, X. Han, S. Liu, S. Zhang, and H. F. Wang, Opt. Lett. 45, 2604 (2020), arXiv: 2006.10992.

    Article  ADS  Google Scholar 

  47. F. Zou, X. Y. Zhang, X. W. Xu, J. F. Huang, and J. Q. Liao, Phys. Rev. A 102, 053710 (2020), arXiv: 1911.03857.

    Article  ADS  Google Scholar 

  48. Y. H. Zhou, X. Y. Zhang, Q. C. Wu, B. L. Ye, Z. Q. Zhang, D. D. Zou, H. Z. Shen, and C. P. Yang, Phys. Rev. A 102, 033713 (2020).

    Article  ADS  Google Scholar 

  49. S. Shen, J. Li, and Y. Wu, Phys. Rev. A 101, 023805 (2020).

    Article  ADS  Google Scholar 

  50. H. Flayac, and V. Savona, Phys. Rev. A 96, 053810 (2017), arXiv: 1709.06484.

    Article  ADS  Google Scholar 

  51. H. Snijders, J. Frey, J. Norman, H. Flayac, V. Savona, A. Gossard, J. Bowers, M. van Exter, D. Bouwmeester, and W. Löffler, Phys. Rev. Lett. 121, 043601 (2018).

    Article  ADS  Google Scholar 

  52. C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, Phys. Rev. Lett. 121, 043602 (2018), arXiv: 1801.04227.

    Article  ADS  Google Scholar 

  53. S. Ghosh, and T. C. H. Liew, Phys. Rev. Lett. 123, 013602 (2019), arXiv: 2001.06192.

    Article  ADS  Google Scholar 

  54. M. O. Scully, and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).

    Book  Google Scholar 

  55. A. Miranowicz, M. Bartkowiak, X. Wang, Y. X. Liu, and F. Nori, Phys. Rev. A 82, 013824 (2010), arXiv: 1004.3182.

    Article  ADS  Google Scholar 

  56. X. Y. Lü, Y. Wu, J. Johansson, H. Jing, J. Zhang, and F. Nori, Phys. Rev. Lett. 114, 093602 (2015), arXiv: 1412.2864.

    Article  ADS  Google Scholar 

  57. M. Bamba, A. Imamoğlu, I. Carusotto, and C. Ciuti, Phys. Rev. A 83, 021802 (2011), arXiv: 1007.1605.

    Article  ADS  Google Scholar 

  58. J. R. Johansson, P. D. Nation, and F. Nori, Comput. Phys. Commun. 183, 1760 (2012), arXiv: 1110.0573.

    Article  ADS  Google Scholar 

  59. M. Li, Y. L. Zhang, S. H. Wu, C. H. Dong, X. B. Zou, G. C. Guo, and C. L. Zou, Phys. Rev. Lett. 129, 043601 (2022).

    Article  ADS  Google Scholar 

  60. B. Coutinho Dos Santos, K. Dechoum, A. Z. Khoury, L. F. da Silva, and M. K. Olsen, Phys. Rev. A 72, 033820 (2005), arXiv: quant-ph/0507123.

    Article  ADS  Google Scholar 

  61. J. Lu, M. Li, C. L. Zou, A. Al Sayem, and H. X. Tang, Optica 7, 1654 (2020), arXiv: 2007.07411.

    Article  ADS  Google Scholar 

  62. J. Y. Chen, Z. Li, Z. Ma, C. Tang, H. Fan, Y. M. Sua, and Y. P. Huang, Phys. Rev. Appl. 16, 064004 (2021).

    Article  ADS  Google Scholar 

  63. M. Zhao, and K. Fang, Optica 9, 258 (2022), arXiv: 2105.12705.

    Article  ADS  Google Scholar 

  64. S. Buckley, M. Radulaski, K. Biermann, and J. Vučković, Appl. Phys. Lett. 103, 211117 (2013), arXiv: 1308.6051.

    Article  ADS  Google Scholar 

  65. M. Minkov, D. Gerace, and S. Fan, Optica 6, 1039 (2019), arXiv: 1906.11996.

    Article  ADS  Google Scholar 

  66. L. Chang, A. Boes, P. Pintus, J. D. Peters, M. J. Kennedy, X. W. Guo, N. Volet, S. P. Yu, S. B. Papp, and J. E. Bowers, APL Photonics 4, 036103 (2019).

    Article  ADS  Google Scholar 

  67. B. Sarma, and A. K. Sarma, Phys. Rev. A 96, 053827 (2017).

    Article  ADS  Google Scholar 

  68. Y. Yan, Y. Cheng, S. Guan, D. Yu, and Z. Duan, Opt. Lett. 43, 5086 (2018), arXiv: 1810.04389.

    Article  ADS  Google Scholar 

  69. A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, Ö. Benson, and V. Sandoghdar, Phys. Rev. Lett. 99, 173603 (2007), arXiv: 0709.3701.

    Article  ADS  Google Scholar 

  70. J. Wiersig, S. W. Kim, and M. Hentschel, Phys. Rev. A 78, 053809 (2008), arXiv: 0810.1584.

    Article  ADS  Google Scholar 

  71. J. Wiersig, Phys. Rev. A 84, 063828 (2011).

    Article  ADS  Google Scholar 

  72. A. Arbabi, Y. M. Kang, C. Y. Lu, E. Chow, and L. L. Goddard, Appl. Phys. Lett. 99, 091105 (2011).

    Article  ADS  Google Scholar 

  73. Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. Gong, Phys. Rev. A 85, 031805 (2012), arXiv: 1206.2422.

    Article  ADS  Google Scholar 

  74. A. Arbabi, and L. L. Goddard, Opt. Lett. 38, 3878 (2013).

    Article  ADS  Google Scholar 

  75. J. Wiersig, Phys. Rev. A 89, 012119 (2014).

    Article  ADS  Google Scholar 

  76. B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, Proc. Natl. Acad. Sci. U.S.A. 113, 6845 (2016).

    Article  ADS  Google Scholar 

  77. J. Wiersig, Phys. Rev. A 93, 033809 (2016).

    Article  ADS  Google Scholar 

  78. J. Wiersig, Non-Hermitian Effects Due to Asymmetric Backscattering of Light in Whispering-Gallery Microcavities (Springer, Singapore, 2018), pp. 155–184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu-Gang Si.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFA1400702), and National Natural Science Foundation of China (Grant No. 11975103).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Material for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, DW., Li, ZH., Chao, SL. et al. Dynamical switchable quantum nonreciprocity induced by off-resonant chiral two-photon driving. Sci. China Phys. Mech. Astron. 67, 260313 (2024). https://doi.org/10.1007/s11433-023-2348-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2348-x

Navigation