Skip to main content
Log in

Anisotropic magnetism and band evolution induced by ferromagnetic phase transition in titanium-based kagome ferromagnet SmTi3Bi4

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Kagome magnets with diverse topological quantum responses are crucial for next-generation topological engineering. The anisotropic magnetism and band evolution induced by ferromagnetic phase transition (FMPT) is reported in a newly discovered titanium-based kagome ferromagnet SmTi3Bi4, which features a distorted Ti kagome lattice and Sm atomic zig-zag chains. Temperature-dependent resistivity, heat capacity, and magnetic susceptibility reveal a ferromagnetic ordering temperature Tc of 23.2 K. A large magnetic anisotropy, observed by applying the magnetic field along three crystallographic axes, identifies the b axis as the easy axis. Angle-resolved photoemission spectroscopy with first-principles calculations unveils the characteristic kagome motif, including the Dirac point at the Fermi level and multiple van Hove singularities. Notably, a band splitting and gap closing attributed to FMPT is observed, originating from the exchange coupling between Sm 4f local moments and itinerant electrons of the kagome Ti atoms, as well as the time-reversal symmetry breaking induced by the long-range ferromagnetic order. Considering the large in-plane magnetization and the evolution of electronic structure under the influence of ferromagnetic ordering, such materials promise to be a new platform for exploring the intricate electronic properties and magnetic phases based on the kagome lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Strečka, L. Čanová, M. Jaščur, and M. Hagiwara, Phys. Rev. B 78, 024427 (2008), arXiv: 0802.1582.

    Article  ADS  Google Scholar 

  2. H. M. Guo, and M. Franz, Phys. Rev. B 80, 113102 (2009), arXiv: 0905.3385.

    Article  ADS  Google Scholar 

  3. J. X. Yin, B. Lian, and M. Z. Hasan, Nature 612, 647 (2002), arXiv: 2212.11628.

    Article  ADS  Google Scholar 

  4. W. H. Ko, P. A. Lee, and X. G. Wen, Phys. Rev. B 79, 214502 (2009), arXiv: 0804.1359.

    Article  ADS  Google Scholar 

  5. S. L. Yu, and J. X. Li, Phys. Rev. B 85, 144402 (2012).

    Article  ADS  Google Scholar 

  6. B. R. Ortiz, S. M. L. Teicher, Y. Hu, J. L. Zuo, P. M. Sarte, E. C. Schueller, A. M. M. Abeykoon, M. J. Krogstad, S. Rosenkranz, R. Osborn, R. Seshadri, L. Balents, J. He, and S. D. Wilson, Phys. Rev. Lett. 125, 247002 (2020), arXiv: 2011.06745.

    Article  ADS  Google Scholar 

  7. B. R. Ortiz, P. M. Sarte, E. M. Kenney, M. J. Graf, S. M. L. Teicher, R. Seshadri, and S. D. Wilson, Phys. Rev. Mater. 5, 034801 (2021), arXiv: 2012.09097.

    Article  Google Scholar 

  8. Q. Yin, Z. Tu, C. Gong, Y. Fu, S. Yan, and H. Lei, Chin. Phys. Lett. 38, 037403 (2021), arXiv: 2101.10193.

    Article  ADS  Google Scholar 

  9. S. Cho, H. Ma, W. Xia, Y. Yang, Z. Liu, Z. Huang, Z. Jiang, X. Lu, J. Liu, Z. Liu, J. Li, J. Wang, Y. Liu, J. Jia, Y. Guo, J. Liu, and D. Shen, Phys. Rev. Lett. 127, 236401 (2021), arXiv: 2105.05117.

    Article  ADS  Google Scholar 

  10. Y. Song, T. Ying, X. Chen, X. Han, X. Wu, A. P. Schnyder, Y. Huang, J. Guo, and X. Chen, Phys. Rev. Lett. 127, 237001 (2021), arXiv: 2105.09898.

    Article  ADS  Google Scholar 

  11. H. W. S. Arachchige, W. R. Meier, M. Marshall, T. Matsuoka, R. Xue, M. A. McGuire, R. P. Hermann, H. Cao, and D. Mandrus, Phys. Rev. Lett. 129, 216402 (2022), arXiv: 2205.04582.

    Article  ADS  Google Scholar 

  12. S. Nie, J. Chen, C. Yue, C. Le, D. Yuan, Z. Wang, W. Zhang, and H. Weng, Sci. Bull. 67, 1958 (2022), arXiv: 2203.03162.

    Article  Google Scholar 

  13. A. Rüegg, and G. A. Fiete, Phys. Rev. B 83, 165118 (2011), arXiv: 1101.1236.

    Article  ADS  Google Scholar 

  14. W. S. Wang, Z. Z. Li, Y. Y. Xiang, and Q. H. Wang, Phys. Rev. B 87, 115135 (2013), arXiv: 1208.4925.

    Article  ADS  Google Scholar 

  15. Z. J. Cheng, I. Belopolski, H. J. Tien, T. A. Cochran, X. P. Yang, W. Ma, J. X. Yin, D. Chen, J. Zhang, C. Jozwiak, A. Bostwick, E. Rotenberg, G. Cheng, M. S. Hossain, Q. Zhang, M. Litskevich, Y. X. Jiang, N. Yao, N. B. M. Schroeter, V. N. Strocov, B. Lian, C. Felser, G. Chang, S. Jia, T. R. Chang, and M. Z. Hasan, Adv. Mater. 35, 2205927 (2023).

    Article  Google Scholar 

  16. W. Ma, X. Xu, J. X. Yin, H. Yang, H. Zhou, Z. J. Cheng, Y. Huang, Z. Qu, F. Wang, M. Z. Hasan, and S. Jia, Phys. Rev. Lett. 126, 246602 (2021), arXiv: 2007.09913.

    Article  ADS  Google Scholar 

  17. S. Nakatsuji, N. Kiyohara, and T. Higo, Nature 527, 212 (2015).

    Article  ADS  Google Scholar 

  18. E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S. Y. Yang, D. Liu, A. Liang, Q. Xu, J. Kroder, V. Süß, H. Borrmann, C. Shekhar, Z. Wang, C. Xi, W. Wang, W. Schnelle, S. Wirth, Y. Chen, S. T. B. Goennenwein, and C. Felser, Nat. Phys. 14, 1125 (2018), arXiv: 1712.06722.

    Article  Google Scholar 

  19. T. Kida, L. A. Fenner, A. A. Dee, I. Terasaki, M. Hagiwara, and A. S. Wills, J. Phys.-Condens. Matter 23, 112205 (2011), arXiv: 0911.0289.

    Article  ADS  Google Scholar 

  20. M. Ikhlas, T. Tomita, T. Koretsune, M. T. Suzuki, D. Nishio-Hamane, R. Arita, Y. Otani, and S. Nakatsuji, Nat. Phys. 13, 1085 (2017), arXiv: 1710.00062.

    Article  Google Scholar 

  21. X. Li, L. Xu, L. Ding, J. Wang, M. Shen, X. Lu, Z. Zhu, and K. Behnia, Phys. Rev. Lett. 119, 056601 (2017), arXiv: 1612.06128.

    Article  ADS  Google Scholar 

  22. X. Xu, J. X. Yin, W. Ma, H. J. Tien, X. B. Qiang, P. V. S. Reddy, H. Zhou, J. Shen, H. Z. Lu, T. R. Chang, Z. Qu, and S. Jia, Nat. Commun. 13, 1197 (2022), arXiv: 2110.07563.

    Article  ADS  Google Scholar 

  23. H. Zhang, J. Koo, C. Xu, M. Sretenovic, B. Yan, and X. Ke, Nat. Commun. 13, 1091 (2022), arXiv: 2202.04484.

    Article  ADS  Google Scholar 

  24. K. Kuroda, T. Tomita, M. T. Suzuki, C. Bareille, A. A. Nugroho, P. Goswami, M. Ochi, M. Ikhlas, M. Nakayama, S. Akebi, R. Noguchi, R. Ishii, N. Inami, K. Ono, H. Kumigashira, A. Varykhalov, T. Muro, T. Koretsune, R. Arita, S. Shin, T. Kondo, and S. Nakatsuji, Nat. Mater. 16, 1090 (2017), arXiv: 1710.06167.

    Article  ADS  Google Scholar 

  25. S. Peng, Y. Han, G. Pokharel, J. Shen, Z. Li, M. Hashimoto, D. Lu, B. R. Ortiz, Y. Luo, H. Li, M. Guo, B. Wang, S. Cui, Z. Sun, Z. Qiao, S. D. Wilson, and J. He, Phys. Rev. Lett. 127, 266401 (2021), arXiv: 2112.15007.

    Article  ADS  Google Scholar 

  26. G. Pokharel, S. M. L. Teicher, B. R. Ortiz, P. M. Sarte, G. Wu, S. Peng, J. He, R. Seshadri, and S. D. Wilson, Phys. Rev. B 104, 235139 (2021), arXiv: 2109.07394.

    Article  ADS  Google Scholar 

  27. Y. Hu, X. Wu, Y. Yang, S. Gao, N. C. Plumb, A. P. Schnyder, W. Xie, J. Ma, and M. Shi, Sci. Adv. 8, eadd2024 (2022), arXiv: 2205.15927.

    Article  Google Scholar 

  28. J. X. Yin, W. Ma, T. A. Cochran, X. Xu, S. S. Zhang, H. J. Tien, N. Shumiya, G. Cheng, K. Jiang, B. Lian, Z. Song, G. Chang, I. Belopolski, D. Multer, M. Litskevich, Z. J. Cheng, X. P. Yang, B. Swidler, H. Zhou, H. Lin, T. Neupert, Z. Wang, N. Yao, T. R. Chang, S. Jia, and M. Zahid Hasan, Nature 583, 533 (2020).

    Article  ADS  Google Scholar 

  29. X. Teng, L. Chen, F. Ye, E. Rosenberg, Z. Liu, J. X. Yin, Y. X. Jiang, J. S. Oh, M. Z. Hasan, K. J. Neubauer, B. Gao, Y. Xie, M. Hashimoto, D. Lu, C. Jozwiak, A. Bostwick, E. Rotenberg, R. J. Birgeneau, J. H. Chu, M. Yi, and P. Dai, Nature 609, 490 (2022), arXiv: 2203.11467.

    Article  ADS  Google Scholar 

  30. J. X. Yin, Y. X. Jiang, X. Teng, M. S. Hossain, S. Mardanya, T. R. Chang, Z. Ye, G. Xu, M. M. Denner, T. Neupert, B. Lienhard, H. B. Deng, C. Setty, Q. Si, G. Chang, Z. Guguchia, B. Gao, N. Shumiya, Q. Zhang, T. A. Cochran, D. Multer, M. Yi, P. Dai, and M. Z. Hasan, Phys. Rev. Lett. 129, 166401 (2022), arXiv: 2203.01888.

    Article  ADS  Google Scholar 

  31. D. M. Clatterbuck, and K. A. Gschneidner Jr., J. Magn. Magn. Mater. 207, 78 (1999).

    Article  ADS  Google Scholar 

  32. G. Venturini, B. C. E. Idrissi, and B. Malaman, J. Magn. Magn. Mater. 94, 35 (1991).

    Article  ADS  Google Scholar 

  33. J. Lee, and E. Mun, Phys. Rev. Mater. 6, 083401 (2022), arXiv: 2206.02924.

    Article  Google Scholar 

  34. H. Ishikawa, T. Yajima, M. Kawamura, H. Mitamura, and K. Kindo, J. Phys. Soc. Jpn. 90, 124704 (2021), arXiv: 2111.03806.

    Article  ADS  Google Scholar 

  35. B. R. Ortiz, G. Pokharel, M. Gundayao, H. Li, F. Kaboudvand, L. Kautzsch, S. Sarker, J. P. C. Ruff, T. Hogan, S. J. G. Alvarado, P. M. Sarte, G. Wu, T. Braden, R. Seshadri, E. S. Toberer, I. Zeljkovic, and S. D. Wilson, Phys. Rev. Mater. 7, 064201 (2023), arXiv: 2302.12354.

    Article  Google Scholar 

  36. L. Chen, Y. Zhou, H. Zhang, X. Ji, K. Liao, Y. Ji, Y. Li, Z. Guo, X. Shen, R. Yu, X. Yu, H. Weng, and G. Wang, arXiv: 2307.02942.

  37. B. Malaman, G. Venturini, R. Welter, J. P. Sanchez, P. Vulliet, and E. Ressouche, J. Magn. Magn. Mater. 202, 519 (1999).

    Article  ADS  Google Scholar 

  38. G. Motoyama, M. Sezaki, J. Gouchi, K. Miyoshi, S. Nishigori, T. Mutou, K. Fujiwara, and Y. Uwatoko, Physica B Condens. Matter 536, 142 (2018).

    Article  ADS  Google Scholar 

  39. G. Pokharel, B. Ortiz, J. Chamorro, P. Sarte, L. Kautzsch, G. Wu, J. Ruff, and S. D. Wilson, Phys. Rev. Mater. 6, 104202 (2022), arXiv: 2205.15559.

    Article  Google Scholar 

  40. E. Rosenberg, J. M. DeStefano, Y. Guo, J. S. Oh, M. Hashimoto, D. Lu, R. J. Birgeneau, Y. Lee, L. Ke, M. Yi, and J. H. Chu, Phys. Rev. B 106, 115139 (2022), arXiv: 2205.14802.

    Article  ADS  Google Scholar 

  41. Y. Hu, C. C. Le, L. Chen, H. B. Deng, Y. Zhou, N. C. Plumb, M. Radovic, R. Thomale, A. P. Schnyder, J. X. Yin, G. Wang, X. X. Wu, and M. Shi, arXiv: 2311.07747.

  42. M. I. Mondal, A. P. Sakhya, M. Sprague, B. R. Ortiz, M. Matzelle, B. Ghosh, N. Valadez, I. B. Elius, A. Bansil, and M. Neupane, arXiv: 2311.11488.

  43. J. W. Guo, L. Q. Zhou, J. Y. Ding, G. X. Qu, Z. T. Liu, Y. Du, H. Zhang, J. J. Li, Y. Y. Zhang, F. W. Zhou, W. Y. Qi, F. Y. Guo, T. Q. Wang, F. C. Fei, Y. B. Huang, T. Qian, D. W. Shen, H. M. Weng, and F. Q. Song, arXiv: 2308.14509.

  44. Z. C. Jiang, T. R. Li, J. Yuan, Z. T. Liu, Z. P. Cao, S. Cho, M. F. Shu, Y. C. Yang, J. Y. Ding, Z. K. Li, J. Y. Liu, Z. H. Liu, J. S. Liu, J. Ma, Z. Sun, Y. F. Guo, and D. W. Shen, arXiv: 2309.01579.

  45. K. van Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).

    Article  ADS  Google Scholar 

  46. D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).

    Article  ADS  Google Scholar 

  47. F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  48. P. C. Canfield, T. Kong, U. S. Kaluarachchi, and N. H. Jo, Philos. Mag. 96, 84 (2016), arXiv: 1509.08131.

    Article  ADS  Google Scholar 

  49. W. Kohn, and L. J. Sham, Phys. Rev. 140, A1133 (1975).

    Article  Google Scholar 

  50. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  51. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  52. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).

    Article  ADS  Google Scholar 

  53. A. A. Mostofi, J. R. Yates, G. Pizzi, Y. S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. 185, 2309 (2014).

    Article  ADS  Google Scholar 

  54. Q. S. Wu, S. N. Zhang, H. F. Song, M. Troyer, and A. A. Soluyanov, Comput. Phys. Commun. 224, 405 (2018), arXiv: 1703.07789.

    Article  ADS  Google Scholar 

  55. C. Pfleiderer, S. R. Julian, and G. G. Lonzarich, Nature 414, 427 (2001).

    Article  ADS  Google Scholar 

  56. W. G. Baber, Proc. Math. Phys. Eng. Sci. 158, 383 (1937).

    Google Scholar 

  57. A. A. Abrikosov, and I. M. Khalatnikov, Sov. Phys. Usp. 1, 68 (1958).

    Article  ADS  Google Scholar 

  58. A. H. Wilson, and R. H. Fowler, Proc. Math. Phys. Eng. Sci. 167, 580 (1938).

    Google Scholar 

  59. N. F. Mott, Adv. Phys. 13, 325 (1964).

    Article  ADS  Google Scholar 

  60. X. N. Luo, C. Dong, S. K. Liu, Z. P. Zhang, A. L. Li, L. H. Yang, and X. C. Li, Chin. Phys. B 24, 067201 (2015).

    Article  ADS  Google Scholar 

  61. P. W. Phillips, N. E. Hussey, and P. Abbamonte, Science 377, eabh4273 (2022).

    Article  Google Scholar 

  62. J. Yuan, Q. Chen, K. Jiang, Z. Feng, Z. Lin, H. Yu, G. He, J. Zhang, X. Jiang, X. Zhang, Y. Shi, Y. Zhang, M. Qin, Z. G. Cheng, N. Tamura, Y. Yang, T. Xiang, J. Hu, I. Takeuchi, K. Jin, and Z. Zhao, Nature 602, 431 (2022).

    Article  ADS  Google Scholar 

  63. X. Jiang, M. Qin, X. Wei, L. Xu, J. Ke, H. Zhu, R. Zhang, Z. Zhao, Q. Liang, Z. Wei, Z. Lin, Z. Feng, F. Chen, P. Xiong, J. Yuan, B. Zhu, Y. Li, C. Xi, Z. Wang, M. Yang, J. Wang, T. Xiang, J. Hu, K. Jiang, Q. Chen, K. Jin, and Z. Zhao, Nat. Phys. 19, 365 (2023).

    Article  Google Scholar 

  64. N. W. Ashcroft, and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).

    Google Scholar 

  65. H. Chen, J. Gao, L. Chen, G. Wang, H. Li, Y. Wang, J. Liu, J. Wang, D. Geng, Q. Zhang, J. Sheng, F. Ye, T. Qian, L. Chen, H. Weng, J. Ma, and X. Chen, Adv. Mater. 34, 2110664 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongming Weng, Tian Qian or Gang Wang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the Synergetic Extreme Condition User Facility (SECUF), the National Key Research and Development Program of China (Grant Nos. 2022YFA1403800, 2022YFA1403900, and 2018YFE0202600), the National Natural Science Foundation of China (Grant Nos. U22A6005, 51832010, 11888101, 11925408, 11921004, and 12188101), the Informatization Plan of the Chinese Academy of Sciences (Grant No. CASWX2021SF0102), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB33000000, and XDB28000000), and the “Dreamline” beamline of Shanghai Synchrotron Radiation Facility (SSRF). Zhe Zheng thanks Shunye Gao, Bei Jiang, Shenggen Cao, Renjie Zhang, Junde Liu and Mojun Pan for their assistance in ARPES experiment and data processing. All authors contributed to the scientific planning and discussions.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplemental Materials for

11433_2023_2344_MOESM1_ESM.pdf

Anisotropic magnetism and band evolution induced by ferromagnetic phase transition in titanium-based kagome ferromagnet SmTi3Bi4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Chen, L., Ji, X. et al. Anisotropic magnetism and band evolution induced by ferromagnetic phase transition in titanium-based kagome ferromagnet SmTi3Bi4. Sci. China Phys. Mech. Astron. 67, 267411 (2024). https://doi.org/10.1007/s11433-023-2344-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2344-6

Navigation