Skip to main content
Log in

Quantum squeezing induced nonreciprocal phonon laser

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Phonon lasers or coherent amplifications of mechanical oscillations are powerful tools for fundamental studies on coherent acoustics and hold potential for diverse applications, ranging from ultrasensitive force sensing to phononic information processing. Here, we propose the use of an optomechanical resonator coupled to a nonlinear optical resonator for directional phonon lasing. We find that by pumping the nonlinear optical resonator, directional optical squeezing can occur along the pump direction. As a result, we can achieve the directional mechanical gain using directional optical squeezing, thereby leading to nonreciprocal phonon lasing with a well-tunable directional power threshold. Our work proposes a feasible way to build nonreciprocal phonon lasers with various nonlinear optical media, which are important for a wide range of applications, such as directional acoustic amplifiers, invisible sound sensing or imaging, and one-way phononic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Swenson, A. Cruciani, A. Benoit, M. Roesch, C. S. Yung, A. Bideaud, and A. Monfardini, Appl. Phys. Lett. 96, 263511 (2010), arXiv: 1004.5066.

    Article  ADS  Google Scholar 

  2. H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, Nat. Commun. 6, 6427 (2015), arXiv: 1409.0580.

    Article  ADS  Google Scholar 

  3. A. Ganesan, C. Do, and A. Seshia, Phys. Rev. Lett. 118, 033903 (2017), arXiv: 1704.08008.

    Article  ADS  Google Scholar 

  4. J. D. Cohen, S. M. Meenehan, G. S. MacCabe, S. Gröblacher, A. H. Safavi-Naeini, F. Marsili, M. D. Shaw, and O. Painter, Nature 520, 522 (2015), arXiv: 1410.1047.

    Article  ADS  Google Scholar 

  5. Y. He, Z. Feng, Y. Jing, W. Xiong, X. Chen, T. Kuang, G. Xiao, Z. Tan, and H. Luo, Opt. Express 31, 37507 (2023).

    Article  ADS  Google Scholar 

  6. M. Serra-Garcia, V. Peri, R. Süsstrunk, O. R. Bilal, T. Larsen, L. G. Villanueva, and S. D. Huber, Nature 555, 342 (2018), arXiv: 1708.05015.

    Article  ADS  Google Scholar 

  7. N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Rev. Mod. Phys. 84, 1045 (2012), arXiv: 1108.6120.

    Article  ADS  Google Scholar 

  8. R. Huang, and H. Jing, Nat. Photon. 13, 372 (2019), arXiv: 1907.01211.

    Article  ADS  Google Scholar 

  9. K. Vahala, M. Herrmann, S. Knünz, V. Batteiger, G. Saathoff, T. W. Hänsch, and T. Udem, Nat. Phys. 5, 682 (2009).

    Article  Google Scholar 

  10. T. Behrle, T. L. Nguyen, F. Reiter, D. Baur, B. de Neeve, M. Stadler, M. Marinelli, F. Lancellotti, S. F. Yelin, and J. P. Home, Phys. Rev. Lett. 131, 043605 (2023), arXiv: 2301.08156.

    Article  ADS  Google Scholar 

  11. J. T. Mendonça, H. Terças, G. Brodin, and M. Marklund, Europhys. Lett. 91, 33001 (2010), arXiv: 0911.4916.

    Article  ADS  Google Scholar 

  12. T. Kuang, R. Huang, W. Xiong, Y. Zuo, X. Han, F. Nori, C. W. Qiu, H. Luo, H. Jing, and G. Xiao, Nat. Phys. 19, 414 (2023), arXiv: 2210.06137.

    Article  Google Scholar 

  13. R. M. Pettit, W. Ge, P. Kumar, D. R. Luntz-Martin, J. T. Schultz, L. P. Neukirch, M. Bhattacharya, and A. N. Vamivakas, Nat. Photon. 13, 402 (2019).

    Article  ADS  Google Scholar 

  14. I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 104, 083901 (2010), arXiv: 0907.5212.

    Article  ADS  Google Scholar 

  15. G. Wang, M. Zhao, Y. Qin, Z. Yin, X. Jiang, and M. Xiao, Photon. Res. 5, 73 (2017).

    Article  Google Scholar 

  16. J. Zhang, B. Peng, Ş. K. Özdemir, K. Pichler, D. O. Krimer, G. Zhao, F. Nori, Y. Liu, S. Rotter, and L. Yang, Nat. Photon. 12, 479 (2018).

    Article  ADS  Google Scholar 

  17. L. Mercadé, K. Pelka, R. Burgwal, A. Xuereb, A. Martínez, and E. Verhagen, Phys. Rev. Lett. 127, 073601 (2021), arXiv: 2101.10788.

    Article  ADS  Google Scholar 

  18. J. Sheng, X. Wei, C. Yang, and H. Wu, Phys. Rev. Lett. 124, 053604 (2020), arXiv: 2004.09154.

    Article  ADS  Google Scholar 

  19. Q. Zhang, C. Yang, J. Sheng, and H. Wu, Proc. Natl. Acad. Sci. USA 119, e2207543119 (2022).

    Article  Google Scholar 

  20. I. Mahboob, K. Nishiguchi, A. Fujiwara, and H. Yamaguchi, Phys. Rev. Lett. 110, 127202 (2013).

    Article  ADS  Google Scholar 

  21. A. J. Kent, R. N. Kini, N. M. Stanton, M. Henini, B. A. Glavin, V. A. Kochelap, and T. L. Linnik, Phys. Rev. Lett. 96, 215504 (2006).

    Article  ADS  Google Scholar 

  22. R. P. Beardsley, A. V. Akimov, M. Henini, and A. J. Kent, Phys. Rev. Lett. 104, 085501 (2010).

    Article  ADS  Google Scholar 

  23. J. Kabuss, A. Carmele, T. Brandes, and A. Knorr, Phys. Rev. Lett. 109, 054301 (2012).

    Article  ADS  Google Scholar 

  24. A. Khaetskii, V. N. Golovach, X. Hu, and I. Žutić, Phys. Rev. Lett. 111, 186601 (2013), arXiv: 1306.1786.

    Article  ADS  Google Scholar 

  25. N. Wang, H. Wen, J. C. Alvarado Zacarias, J. E. Antonio-Lopez, Y. Zhang, D. Cruz Delgado, P. Sillard, A. Schülzgen, B. E. A. Saleh, R. Amezcua-Correa, and G. Li, Sci. Adv. 9, eadg7841 (2023).

    Article  Google Scholar 

  26. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014), arXiv: 1303.0733.

    Article  ADS  Google Scholar 

  27. H. Jing, S. K. Özdemir, X. Y. Lu, J. Zhang, L. Yang, and F. Nori, Phys. Rev. Lett. 113, 053604 (2014), arXiv: 1403.0657.

    Article  ADS  Google Scholar 

  28. Y. F. Xie, Z. Cao, B. He, and Q. Lin, Opt. Express 28, 22580 (2020).

    Article  ADS  Google Scholar 

  29. H. Lu, S. K. Özdemir, L. M. Kuang, F. Nori, and H. Jing, Phys. Rev. Appl. 8, 044020 (2017), arXiv: 1701.08000.

    Article  ADS  Google Scholar 

  30. Y. L. Zhang, C. L. Zou, C. S. Yang, H. Jing, C. H. Dong, G. C. Guo, and X. B. Zou, New J. Phys. 20, 093005 (2018), arXiv: 1706.02097.

    Article  ADS  Google Scholar 

  31. X. Y. Zhang, C. Cao, Y. P. Gao, L. Fan, R. Zhang, and C. Wang, New J. Phys. 25, 053039 (2023).

    Article  ADS  Google Scholar 

  32. B. Wang, Z. X. Liu, X. Jia, H. Xiong, and Y. Wu, Commun. Phys. 1, 43 (2018).

    Article  Google Scholar 

  33. B. Wang, H. Xiong, X. Jia, and Y. Wu, Sci. Rep. 8, 282 (2018).

    Article  ADS  Google Scholar 

  34. B. He, L. Yang, and M. Xiao, Phys. Rev. A 94, 031802 (2016), arXiv: 1609.00075.

    Article  ADS  Google Scholar 

  35. Q. Lin, B. He, and M. Xiao, Phys. Rev. Res. 3, L032018 (2021), arXiv: 2101.05237.

    Article  Google Scholar 

  36. S. Kim, X. Xu, J. M. Taylor, and G. Bahl, Nat. Commun. 8, 205 (2017), arXiv: 1609.08674.

    Article  ADS  Google Scholar 

  37. H. Xu, L. Jiang, A. A. Clerk, and J. G. E. Harris, Nature 568, 65 (2019), arXiv: 1807.03484.

    Article  ADS  Google Scholar 

  38. D. G. Lai, J. F. Huang, X. L. Yin, B. P. Hou, W. Li, D. Vitali, F. Nori, and J. Q. Liao, Phys. Rev. A 102, 011502 (2020), arXiv: 2007.14851.

    Article  ADS  Google Scholar 

  39. R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alú, Science 343, 516 (2014).

    Article  ADS  Google Scholar 

  40. B. I. Popa, and S. A. Cummer, Nat. Commun. 5, 3398 (2014).

    Article  ADS  Google Scholar 

  41. J. Zhang, B. Peng, Ş. K. Özdemir, Y. Liu, H. Jing, X. Lü, Y. Liu, L. Yang, and F. Nori, Phys. Rev. B 92, 115407 (2015), arXiv: 1510.07343.

    Article  ADS  Google Scholar 

  42. T. Devaux, V. Tournat, O. Richoux, and V. Pagneux, Phys. Rev. Lett. 115, 234301 (2015), arXiv: 1510.06633.

    Article  ADS  Google Scholar 

  43. A. Seif, W. DeGottardi, K. Esfarjani, and M. Hafezi, Nat. Commun. 9, 1207 (2018), arXiv: 1710.08967.

    Article  ADS  Google Scholar 

  44. B. Liang, X. S. Guo, J. Tu, D. Zhang, and J. C. Cheng, Nat. Mater. 9, 989 (2010).

    Article  ADS  Google Scholar 

  45. L. Shao, W. Mao, S. Maity, N. Sinclair, Y. Hu, L. Yang, and M. Lončar, Nat. Electron. 3, 267 (2020).

    Article  Google Scholar 

  46. C. Coulais, D. Sounas, and A. Alú, Nature 542, 461 (2017), arXiv: 1704.03305.

    Article  ADS  Google Scholar 

  47. Y. Li, C. Shen, Y. Xie, J. Li, W. Wang, S. A. Cummer, and Y. Jing, Phys. Rev. Lett. 119, 035501 (2017).

    Article  ADS  Google Scholar 

  48. Q. Wang, Z. Zhou, D. Liu, H. Ding, M. Gu, and Y. Li, Sci. Adv. 8, eabq4451 (2022).

    Article  ADS  Google Scholar 

  49. G. Penelet, V. Pagneux, G. Poignand, C. Olivier, and Y. Aurégan, Phys. Rev. Appl. 16, 064012 (2021).

    Article  ADS  Google Scholar 

  50. X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, Phys. Rev. Lett. 106, 084301 (2011).

    Article  ADS  Google Scholar 

  51. A. V. Poshakinskiy, and A. N. Poddubny, Phys. Rev. Lett. 118, 156801 (2017), arXiv: 1611.07970.

    Article  ADS  Google Scholar 

  52. B. Li, Nat. Mater. 9, 962 (2010).

    Article  ADS  Google Scholar 

  53. S. A. Cummer, Science 343, 495 (2014).

    Article  ADS  Google Scholar 

  54. Y. Wang, B. Yousefzadeh, H. Chen, H. Nassar, G. Huang, and C. Daraio, Phys. Rev. Lett. 121, 194301 (2018), arXiv: 1803.11503.

    Article  ADS  Google Scholar 

  55. R. Fleury, A. B. Khanikaev, and A. Alú, Nat. Commun. 7, 11744 (2016), arXiv: 1511.08427.

    Article  ADS  Google Scholar 

  56. S. Manipatruni, J. T. Robinson, and M. Lipson, Phys. Rev. Lett. 102, 213903 (2009).

    Article  ADS  Google Scholar 

  57. Z. Shen, Y. L. Zhang, Y. Chen, C. L. Zou, Y. F. Xiao, X. B. Zou, F. W. Sun, G. C. Guo, and C. H. Dong, Nat. Photon. 10, 657 (2016), arXiv: 1604.02297.

    Article  ADS  Google Scholar 

  58. F. Ruesink, M. A. Miri, A. Alú, and E. Verhagen, Nat. Commun. 7, 13662 (2016), arXiv: 1607.07180.

    Article  ADS  Google Scholar 

  59. F. Ruesink, J. P. Mathew, M. A. Miri, A. Alú, and E. Verhagen, Nat. Commun. 9, 1798 (2018), arXiv: 1708.07792.

    Article  ADS  Google Scholar 

  60. Z. Shen, Y. L. Zhang, Y. Chen, Y. F. Xiao, C. L. Zou, G. C. Guo, and C. H. Dong, Phys. Rev. Lett. 130, 013601 (2023).

    Article  ADS  Google Scholar 

  61. N. R. Bernier, L. D. Tóth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg, Nat. Commun. 8, 604 (2017), arXiv: 1612.08223.

    Article  ADS  Google Scholar 

  62. Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, Nat. Commun. 9, 1797 (2018), arXiv: 1709.06236.

    Article  ADS  Google Scholar 

  63. Y. Jiang, S. Maayani, T. Carmon, F. Nori, and H. Jing, Phys. Rev. Appl. 10, 064037 (2018), arXiv: 1810.08761.

    Article  ADS  Google Scholar 

  64. Y. Xu, J. Y. Liu, W. Liu, and Y. F. Xiao, Phys. Rev. A 103, 053501 (2021).

    Article  ADS  Google Scholar 

  65. L. Tang, J. Tang, M. Chen, F. Nori, M. Xiao, and K. Xia, Phys. Rev. Lett. 128, 083604 (2022), arXiv: 2110.05016.

    Article  ADS  Google Scholar 

  66. X. Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, Phys. Rev. Lett. 114, 093602 (2015), arXiv: 1412.2864.

    Article  ADS  Google Scholar 

  67. W. Qin, V. Macrí, A. Miranowicz, S. Savasta, and F. Nori, Phys. Rev. A 100, 062501 (2019), arXiv: 1902.04216.

    Article  ADS  Google Scholar 

  68. W. Qin, A. Miranowicz, P. B. Li, X. Y. Lü, J. Q. You, and F. Nori, Phys. Rev. Lett. 120, 093601 (2018), arXiv: 1709.09555.

    Article  ADS  Google Scholar 

  69. W. Zhao, S. D. Zhang, A. Miranowicz, and H. Jing, Sci. China-Phys. Mech. Astron. 63, 224211 (2020), arXiv: 1905.12493.

    Article  ADS  Google Scholar 

  70. Y. Wang, C. Li, E. M. Sampuli, J. Song, Y. Jiang, and Y. Xia, Phys. Rev. A 99, 023833 (2019), arXiv: 1902.05751.

    Article  ADS  Google Scholar 

  71. C. J. Zhu, L. L. Ping, Y. P. Yang, and G. S. Agarwal, Phys. Rev. Lett. 124, 073602 (2020), arXiv: 1907.00522.

    Article  ADS  Google Scholar 

  72. Y. Wang, J. L. Wu, J. Song, Z. J. Zhang, Y. Y. Jiang, and Y. Xia, Phys. Rev. A 101, 053826 (2020).

    Article  ADS  Google Scholar 

  73. Y. Wang, J. L. Wu, J. X. Han, Y. Y. Jiang, Y. Xia, and J. Song, Phys. Rev. A 102, 032601 (2020), arXiv: 2008.05670.

    Article  ADS  Google Scholar 

  74. W. Qin, A. Miranowicz, H. Jing, and F. Nori, Phys. Rev. Lett. 127, 093602 (2021), arXiv: 2101.03662.

    Article  ADS  Google Scholar 

  75. Y. H. Chen, W. Qin, X. Wang, A. Miranowicz, and F. Nori, Phys. Rev. Lett. 126, 023602 (2021), arXiv: 2008.04078.

    Article  ADS  Google Scholar 

  76. M. Villiers, W. C. Smith, A. Petrescu, A. Borgognoni, M. Delbecq, A. Sarlette, M. Mirrahimi, P. Campagne-Ibarcq, T. Kontos, and Z. Leghtas, arXiv: 2212.04991.

  77. W. Ge, B. C. Sawyer, J. W. Britton, K. Jacobs, J. J. Bollinger, and M. Foss-Feig, Phys. Rev. Lett. 122, 030501 (2019).

    Article  ADS  Google Scholar 

  78. S. C. Burd, R. Srinivas, H. M. Knaack, W. Ge, A. C. Wilson, D. J. Wineland, D. Leibfried, J. J. Bollinger, D. T. C. Allcock, and D. H. Slichter, Nat. Phys. 17, 898 (2021), arXiv: 2009.14342.

    Article  Google Scholar 

  79. P. B. Li, Y. Zhou, W. B. Gao, and F. Nori, Phys. Rev. Lett. 125, 153602 (2020), arXiv: 2003.07151.

    Article  ADS  Google Scholar 

  80. M. A. Lemonde, N. Didier, and A. A. Clerk, Nat. Commun. 7, 11338 (2016), arXiv: 1509.09238.

    Article  ADS  Google Scholar 

  81. Y. Wang, J. L. Wu, J. X. Han, Y. Xia, Y. Y. Jiang, and J. Song, Phys. Rev. Appl. 17, 024009 (2022), arXiv: 2112.08562.

    Article  ADS  Google Scholar 

  82. X. F. Pan, X. L. Hei, X. L. Dong, J. Q. Chen, C. P. Shen, H. Ali, and P. B. Li, Phys. Rev. A 107, 023722 (2023), arXiv: 2210.04751.

    Article  ADS  Google Scholar 

  83. X. L. Hei, P. B. Li, X. F. Pan, and F. Nori, Phys. Rev. Lett. 130, 073602 (2023), arXiv: 2301.10424.

    Article  ADS  Google Scholar 

  84. Y. Wang, H. L. Zhang, J. L. Wu, J. Song, K. Yang, W. Qin, H. Jing, and L. M. Kuang, Sci. China-Phys. Mech. Astron. 66, 110311 (2023), arXiv: 2307.11961.

    Article  ADS  Google Scholar 

  85. Y.-F. Jiao, Y.-L. Zuo, Y. Wang, W. Lu, J.-Q. Liao, L.-M. Kuang, and H. Jing, arXiv: 2311.11484.

  86. C. P. Shen, J. Q. Chen, X. F. Pan, Y. M. Ren, X. L. Dong, X. L. Hei, Y. F. Qiao, and P. B. Li, Phys. Rev. A 108, 023716 (2023).

    Article  ADS  Google Scholar 

  87. D. Y. Wang, L. L. Yan, S. L. Su, C. H. Bai, H. F. Wang, and E. Liang, Opt. Express 31, 22343 (2023).

    Article  ADS  Google Scholar 

  88. D. W. Liu, K. W. Huang, Y. Wu, and L. G. Si, Appl. Phys. Lett. 123, 061103 (2023).

    Article  ADS  Google Scholar 

  89. K. W. Huang, Y. Wu, and L. G. Si, Opt. Lett. 47, 3311 (2022).

    Article  ADS  Google Scholar 

  90. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, Phys. Rev. Lett. 92, 043903 (2004).

    Article  ADS  Google Scholar 

  91. J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, Phys. Rev. Lett. 104, 153901 (2010), arXiv: 0912.3864.

    Article  ADS  Google Scholar 

  92. X. Guo, C. L. Zou, H. Jung, and H. X. Tang, Phys. Rev. Lett. 117, 123902 (2016).

    Article  ADS  Google Scholar 

  93. J. Lin, Y. Xu, J. Ni, M. Wang, Z. Fang, L. Qiao, W. Fang, and Y. Cheng, Phys. Rev. Appl. 6, 014002 (2016).

    Article  ADS  Google Scholar 

  94. X. Zhang, Q. T. Cao, Z. Wang, Y. Liu, C. W. Qiu, L. Yang, Q. Gong, and Y. F. Xiao, Nat. Photon. 13, 21 (2019).

    Article  ADS  Google Scholar 

  95. A. W. Bruch, X. Liu, J. B. Surya, C. L. Zou, and H. X. Tang, Optica 6, 1361 (2019), arXiv: 1909.07422.

    Article  ADS  Google Scholar 

  96. Z. Ma, J. Y. Chen, Z. Li, C. Tang, Y. M. Sua, H. Fan, and Y. P. Huang, Phys. Rev. Lett. 125, 263602 (2020), arXiv: 2010.04242.

    Article  ADS  Google Scholar 

  97. X. Lu, G. Moille, A. Rao, D. A. Westly, and K. Srinivasan, Nat. Photon. 15, 131 (2021), arXiv: 2003.12176.

    Article  ADS  Google Scholar 

  98. J. Q. Wang, Y. H. Yang, M. Li, X. X. Hu, J. B. Surya, X. B. Xu, C. H. Dong, G. C. Guo, H. X. Tang, and C. L. Zou, Phys. Rev. Lett. 126, 133601 (2021), arXiv: 2011.10352.

    Article  ADS  Google Scholar 

  99. Y. Xu, A. A. Sayem, L. Fan, C. L. Zou, S. Wang, R. Cheng, W. Fu, L. Yang, M. Xu, and H. X. Tang, Nat. Commun. 12, 4453 (2021), arXiv: 2012.14909.

    Article  ADS  Google Scholar 

  100. J. Lu, A. Al Sayem, Z. Gong, J. B. Surya, C. L. Zou, and H. X. Tang, Optica 8, 539 (2021), arXiv: 2101.04735.

    Article  ADS  Google Scholar 

  101. J. Lu, M. Li, C. L. Zou, A. Al Sayem, and H. X. Tang, Optica 7, 1654 (2020), arXiv: 2007.07411.

    Article  ADS  Google Scholar 

  102. B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, Science 346, 328 (2014), arXiv: 1410.7474.

    Article  ADS  Google Scholar 

  103. X. W. Xu, J. Q. Liao, H. Jing, and L. M. Kuang, Sci. China-Phys. Mech. Astron. 66, 100312 (2023), arXiv: 2208.08187.

    Article  ADS  Google Scholar 

  104. R. Huang, A. Miranowicz, J. Q. Liao, F. Nori, and H. Jing, Phys. Rev. Lett. 121, 153601 (2018), arXiv: 1807.10084.

    Article  ADS  Google Scholar 

  105. Y. W. Lu, J. F. Liu, Z. Liao, and X. H. Wang, Sci. China-Phys. Mech. Astron. 64, 274212 (2021).

    Article  ADS  Google Scholar 

  106. Y. F. Jiao, S. D. Zhang, Y. L. Zhang, A. Miranowicz, L. M. Kuang, and H. Jing, Phys. Rev. Lett. 125, 143605 (2020), arXiv: 2002.11148.

    Article  ADS  Google Scholar 

  107. J. X. Liu, Y. F. Jiao, Y. Li, X. W. Xu, Q. Y. He, and H. Jing, Sci. China-Phys. Mech. Astron. 66, 230312 (2023), arXiv: 2209.12508.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Jing.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Hui Jing was supported by the National Natural Science Foundation of China (Grant No. 11935006), the Hunan Provincial Major Sci-Tech Program (Grant No. 2023ZJ1010), and the Science and Technology Innovation Program of Hunan Province (Grant No. 2020RC4047). Le-Man Kuang was supported by the National Natural Science Foundation of China (Grant Nos. 12247105, 12175060, and 11935006), and XJ-Lab Key Project (Grant No. 23XJ02001). Keyu Xia was supported by the National Key R&D Program of China (Grant No. 2019YFA0308704), the National Natural Science Foundation of China (Grant No. 92365107), and the Program for Innovative Talents and Teams in Jiangsu (Grant No. JSSCTD202138). Tian-Xiang Lu is supported by the National Natural Science Foundation of China (Grant No. 12205054), the Jiangxi Provincial Education Office Natural Science Fund Project (Grant No. GJJ211437), and the Ph.D. Research Foundation (Grant No. BSJJ202122). Xing Xiao was supported by the National Natural Science Foundation of China (Grant No. 12265004). Yan Wang was supported by the National Natural Science Foundation of China (Grant No. 12205256), and the Henan Provincial Science and Technology Research Project (Grant No. 232102221001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, TX., Wang, Y., Xia, K. et al. Quantum squeezing induced nonreciprocal phonon laser. Sci. China Phys. Mech. Astron. 67, 260312 (2024). https://doi.org/10.1007/s11433-023-2340-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2340-7

Navigation