Skip to main content
Log in

Reveal the lost entanglement for accelerated atoms in the high-dimensional spacetime

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

When atoms are accelerated in the vacuum, entanglement among atoms will degrade compared with the initial situation before the acceleration. In this study, we propose a novel and interesting view that the lost entanglement can be recovered completely when the high-dimensional spacetime is exploited, in the case that the acceleration is not too large, since the entanglement loss rate caused by the large acceleration is faster than the recovery process. We also calculate the entanglement change caused by the anti-Unruh effect and found that the lost entanglement could just be recovered part by the anti-Unruh effect, and the anti-Unruh effect could only appear for a finite range of acceleration when the interaction time scale is approximately shorter than the reciprocal of the energy gap in two dimensional spacetime. The limit case of zero acceleration is also investigated, which gives an analytical interpretation for the increase or recovery of entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. G. Unruh, Phys. Rev. D 14, 870 (1976).

    Article  ADS  Google Scholar 

  2. S. W. Hawking, Nature 248, 30 (1974).

    Article  ADS  Google Scholar 

  3. L. C. B. Crispino, A. Higuchi, and G. E. A. Matsas, Rev. Mod. Phys. 80, 787 (2008), arXiv: 0710.5373.

    Article  ADS  Google Scholar 

  4. D. Harlow, Rev. Mod. Phys. 88, 015002 (2016), arXiv: 1409.1231.

    Article  ADS  Google Scholar 

  5. D. Barman, A. Choudhury, B. Kad, and B. R. Majhi, Phys. Rev. D 107, 045001 (2023), arXiv: 2211.00383.

    Article  ADS  Google Scholar 

  6. K. Gallock-Yoshimura, and R. B. Mann, Phys. Rev. D 104, 125017 (2021), arXiv: 2109.07495.

    Article  ADS  Google Scholar 

  7. Z. Liu, J. Zhang, R. B. Mann, and H. Yu, Phys. Rev. D 105, 085012 (2022), arXiv: 2111.04392.

    Article  ADS  Google Scholar 

  8. G. Salton, R. B. Mann, and N. C. Menicucci, New J. Phys. 17, 035001 (2015), arXiv: 1408.1395.

    Article  ADS  Google Scholar 

  9. J. Foo, R. B. Mann, and M. Zych, Phys. Rev. D 103, 065013 (2021), arXiv: 2101.01912.

    Article  ADS  Google Scholar 

  10. Z. Liu, J. Zhang, and H. Yu, J. High Energ. Phys. 2021, 20 (2021).

    Article  Google Scholar 

  11. L. J. Henderson, R. A. Hennigar, R. B. Mann, A. R. H. Smith, and J. Zhang, J. High Energ. Phys. 2019, 178 (2019).

    Article  Google Scholar 

  12. D. Mendez-Avalos, L. J. Henderson, K. Gallock-Yoshimura, and R. B. Mann, Gen. Relativ. Gravit. 54, 87 (2022), arXiv: 2206.11902.

    Article  ADS  Google Scholar 

  13. A. Pozas-Kerstjens, and E. Martín-Martínez, Phys. Rev. D 92, 064042 (2015), arXiv: 1506.03081.

    Article  ADS  Google Scholar 

  14. D. Bhattacharya, K. Gallock-Yoshimura, L. J. Henderson, and R. B. Mann, Phys. Rev. D 107, 105008 (2023), arXiv: 2212.12803.

    Article  ADS  Google Scholar 

  15. J. Yan, and B. Zhang, Phys. Rev. D 108, 105015 (2023), arXiv: 2311.02615.

    Article  ADS  Google Scholar 

  16. Z. Tian, J. Wang, H. Fan, and J. Jing, Sci. Rep. 5, 7946 (2015), arXiv: 1501.06676.

    Article  ADS  Google Scholar 

  17. J. Wang, Z. Tian, J. Jing, and H. Fan, Sci. Rep. 4, 7195 (2014), arXiv: 1405.1940.

    Article  ADS  Google Scholar 

  18. J. Feng, and J. J. Zhang, Phys. Lett. B 827, 136992 (2022), arXiv: 2111.00277.

    Article  Google Scholar 

  19. D. C. M. Ostapchuk, S. Y. Lin, R. B. Mann, and B. L. Hu, J. High Energ. Phys. 2012(7), 072 (2012).

    Article  Google Scholar 

  20. F. Benatti, and R. Floreanini, Phys. Rev. A 70, 012112 (2004).

    Article  ADS  Google Scholar 

  21. D. Moustos, Phys. Rev. D 98, 065006 (2018), arXiv: 1806.10005.

    Article  ADS  MathSciNet  Google Scholar 

  22. E. Martín-Martínez, A. R. H. Smith, and D. R. Terno, Phys. Rev. D 93, 044001 (2016), arXiv: 1507.02688.

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Peres, and D. R. Terno, Rev. Mod. Phys. 76, 93 (2004), arXiv: quant-ph/0212023.

    Article  ADS  Google Scholar 

  24. P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E. Tessier, Phys. Rev. A 74, 032326 (2006), arXiv: quant-ph/0603269.

    Article  ADS  Google Scholar 

  25. E. Martín-Martínez, L. J. Garay, and J. Leoin, Phys. Rev. D 82, 064006 (2010), arXiv: 1006.1394.

    Article  ADS  Google Scholar 

  26. J. Wang, and J. Jing, Phys. Rev. A 83, 022314 (2011), arXiv: 1012.4268; Erratum ibid. 97, 029902 (2018).

    Article  ADS  Google Scholar 

  27. M. Shamirzaie, B. N. Esfahani, and M. Soltani, Int. J. Theor. Phys. 51, 787 (2012).

    Article  Google Scholar 

  28. D. E. Bruschi, A. Dragan, I. Fuentes, and J. Louko, Phys. Rev. D 86, 025026 (2012), arXiv: 1205.5296.

    Article  ADS  Google Scholar 

  29. B. Richter, and Y. Omar, Phys. Rev. A 92, 022334 (2015), arXiv: 1503.07526.

    Article  ADS  MathSciNet  Google Scholar 

  30. W. G. Brenna, R. B. Mann, and E. Martín-Martínez, Phys. Lett. B 757, 307 (2016), arXiv: 1504.02468.

    Article  ADS  Google Scholar 

  31. L. J. Garay, E. Martín-Martínez, and J. de Ramoin, Phys. Rev. D 94, 104048 (2016), arXiv: 1607.05287.

    Article  ADS  MathSciNet  Google Scholar 

  32. T. Li, B. Zhang, and L. You, Phys. Rev. D 97, 045005 (2018), arXiv: 1802.07886.

    Article  ADS  Google Scholar 

  33. Y. Pan, and B. Zhang, Phys. Rev. A 101, 062111 (2020), arXiv: 2009.05179.

    Article  ADS  MathSciNet  Google Scholar 

  34. Y. Pan, and B. Zhang, Phys. Rev. D 104, 125014 (2021), arXiv: 2112.01889.

    Article  ADS  MathSciNet  Google Scholar 

  35. Y. Zhou, J. Hu, and H. Yu, J. High Energ. Phys. 2021, 88 (2021).

    Article  Google Scholar 

  36. S. Barman, and B. R. Majhi, J. High Energ. Phys. 2021(3), 245 (2021).

    Article  Google Scholar 

  37. Y. Chen, J. Hu, and H. Yu, Phys. Rev. D 105, 045013 (2022), arXiv: 2110.01780.

    Article  ADS  Google Scholar 

  38. Y. Pan, and B. Zhang, Phys. Rev. D 107, 085001 (2023), arXiv: 2303.09955.

    Article  ADS  Google Scholar 

  39. I. Fuentes-Schuller, and R. B. Mann, Phys. Rev. Lett. 95, 120404 (2005), arXiv: quant-ph/0410172.

    Article  ADS  MathSciNet  Google Scholar 

  40. J. Audretsch, M. Mensky, and R. Müller, Phys. Rev. D 51, 1716 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  41. P. Kok, and U. Yurtsever, Phys. Rev. D 68, 085006 (2003), arXiv: gr-qc/0306084.

    Article  ADS  Google Scholar 

  42. J. Yan, and B. Zhang, J. High Energ. Phys. 2022, 51 (2022).

    Article  Google Scholar 

  43. B. S. DeWitt, in General Relativity: An Einstein Centenary Survey, edited by S. W. Hawking, and W. Israel (Cambridge University Press, Cambridge, 1979), pp. 680–745.

    Google Scholar 

  44. J. Arrechea, C. Barceló, L. J. Garay, and G. García-Moreno, Phys. Rev. D 104, 065004 (2021), arXiv: 2101.11933.

    Article  ADS  Google Scholar 

  45. S. Takagi, Prog. Theor. Phys. Suppl. 88, 1 (1986).

    Article  ADS  Google Scholar 

  46. J. Polchinski, String Theory Vol. 2: Superstring Theory and Beyond (Cambridge University Press, Cambridge, 1998).

    Book  Google Scholar 

  47. W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998), arXiv: quant-ph/9709029.

    Article  ADS  Google Scholar 

  48. N. D. Birrell, and P. C. W. Davies, Phys. Rev. D 18, 4408 (1978).

    Article  ADS  Google Scholar 

  49. D. Wu, J. Yang, and Y. Shi, Eur. Phys. J. C 83, 1110 (2023), arXiv: 2305.11453.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baocheng Zhang or Qingyu Cai.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12375057, 11947301, and 12047502), and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Grant No. G1323523064).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Zhang, B. & Cai, Q. Reveal the lost entanglement for accelerated atoms in the high-dimensional spacetime. Sci. China Phys. Mech. Astron. 67, 260411 (2024). https://doi.org/10.1007/s11433-023-2336-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2336-y

Navigation