Skip to main content
Log in

Microlensing bias on the detection of strong lensing gravitational wave

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Identifying strong lensing gravitational wave (SLGW) events is of utmost importance in astrophysics as we approach the historic first detection of SLGW amidst the growing number of gravitational wave (GW) events. Currently, one crucial method for identifying SLGW signals involves assessing the overlap of parameters between two GWs. However, the distribution of discrete matter, such as stars and sub-halos, within the strong lensing galaxy can imprint a wave optical (WO) effect on the SLGW waveform. These frequency dependent imprints introduce biases in parameter estimation and impact SLGW identification. In this study, we assess the influence of the stellar microlensing field embedded in a strong lensing galaxy. Our findings demonstrate that the WO effect reduces the detection efficiency of SLGW by 5%–50% for various false alarm probabilities per pair (FAPper pair). Specifically, at an FAPper pair of 10−5, the detection efficiency decreases from ∼ 10% to ∼ 5%. Consequently, the presence of the microlensing field can result in missing half of the strong lensing candidates. Additionally, the microlensing WO effect introduces a noticeable bias in intrinsic parameters, particularly for chirp mass and mass ratio. However, it has tiny influence on extrinsic parameters. Considering all parameters, ∼ 30% of events exhibit a 1σ parameter bias, ∼ 12% exhibit a 2σ parameter bias, and ∼ 5% exhibit a 3σ parameter bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. S. Kochanek, Astrophys. J. 373, 354 (1991).

    Article  ADS  Google Scholar 

  2. S. Mao, and P. Schneider, Mon. Not. R. Astron. Soc. 295, 587 (1998).

    Article  ADS  Google Scholar 

  3. R. B. Metcalf, and P. Madau, Astrophys. J. 563, 9 (2001).

    Article  ADS  Google Scholar 

  4. M. Chiba, Astrophys. J. 565, 17 (2002).

    Article  ADS  Google Scholar 

  5. N. Dalal, and C. S. Kochanek, Astrophys. J. 572, 25 (2002).

    Article  ADS  Google Scholar 

  6. R. B. Metcalf, and H. S. Zhao, Astrophys. J. 567, L5 (2002).

    Article  ADS  Google Scholar 

  7. C. R. Keeton, B. S. Gaudi, and A. O. Petters, Astrophys. J. 598, 138 (2003).

    Article  ADS  Google Scholar 

  8. C. S. Kochanek, and N. Dalal, Astrophys. J. 610, 69 (2004).

    Article  ADS  Google Scholar 

  9. M. Bradač, P. Schneider, M. Lombardi, M. Steinmetz, L. V. E. Koopmans, and J. F. Navarro, Astron. Astrophys. 423, 797 (2004).

    Article  ADS  Google Scholar 

  10. R. Takahashi, and T. Nakamura, Astrophys. J. 595, 1039 (2003).

    Article  ADS  Google Scholar 

  11. M. H. Y. Cheung, J. Gais, O. A. Hannuksela, and T. G. F. Li, Mon. Not. R. Astron. Soc. 503, 3326 (2021).

    Article  ADS  Google Scholar 

  12. S. M. C. Yeung, M. H. Y. Cheung, J. A. J. Gais, O. A. Hannuksela, and T. G. F. Li, arXiv: 2112.07635.

  13. A. K. Meena, and J. S. Bagla, Mon. Not. R. Astron. Soc. 492, 1127 (2020).

    Article  ADS  Google Scholar 

  14. J. M. Diego, O. A. Hannuksela, P. L. Kelly, G. Pagano, T. Broadhurst, K. Kim, T. G. F. Li, and G. F. Smoot, Astron. Astrophys. 627, A130 (2019).

    Article  ADS  Google Scholar 

  15. A. Mishra, A. K. Meena, A. More, S. Bose, and J. S. Bagla, Mon. Not. R. Astron. Soc. 508, 4869 (2021).

    Article  ADS  Google Scholar 

  16. A. K. Meena, A. Mishra, A. More, S. Bose, and J. S. Bagla, Mon. Not. R. Astron. Soc. 517, 872 (2022).

    Article  ADS  Google Scholar 

  17. X. Shan, G. Li, X. Chen, W. Zheng, and W. Zhao, Sci. China-Phys. Mech. Astron. 66, 239511 (2023).

    Article  ADS  Google Scholar 

  18. X. Shan, X. Chen, B. Hu, and R.-G. Cai. arXiv: 2301.06117.

  19. S. Savastano, G. Tambalo, H. Villarrubia-Rojo, and M. Zumalacarregui. Phys. Rev. D 108, 103532 (2023)

    Article  ADS  Google Scholar 

  20. A. Mishra, A. K. Meena, A. More, and S. Bose, arXiv: 2306.11479.

  21. Z. Li, J. Qiao, W. Zhao, and X. Er, J. Cosmol. Astropart. Phys. 2022(10), 095 (2022).

    Article  Google Scholar 

  22. M. Wang, S. Chen, and J. Jing, Sci. China-Phys. Mech. Astron. 66, 110411 (2023).

    Article  ADS  Google Scholar 

  23. B. P. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. X 9, 031040 (2019).

    Google Scholar 

  24. R. Abbott, et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. X 11, 021053 (2021).

    Google Scholar 

  25. R. Abbott, et al. (The LIGO Scientific Collaboration, The Virgo Collaboration, and The KAGRA Collaboration), arXiv: 2111.03606.

  26. K. Haris, A. K. Mehta, S. Kumar, T. Venumadhav, and P. Ajith, arXiv: 1807.07062.

  27. L. Dai, B. Zackay, T. Venumadhav, J. Roulet, and M. Zaldarriaga, arXiv: 2007.12709.

  28. R. K. L. Lo, and I. Magana Hernandez, Phys. Rev. D 107, 123015 (2023).

    Article  ADS  Google Scholar 

  29. Z. Gao, K. Liao, L. Yang, and Z. H. Zhu, Mon. Not. R. Astron. Soc. 526, 682 (2023).

    Article  ADS  Google Scholar 

  30. K. Kim, J. Lee, R. S. H. Yuen, O. A. Hannuksela, and T. G. F. Li, Astrophys. J. 915, 119 (2021).

    Article  ADS  Google Scholar 

  31. S. Goyal, H. D., S. J. Kapadia, and P. Ajith, Phys. Rev. D 104, 124057 (2021).

    Article  ADS  Google Scholar 

  32. L. Dai, and T. Venumadhav, arXiv: 1702.04724.

  33. Y. Wang, R. K. L. Lo, A. K. Y. Li, and Y. Chen, Phys. Rev. D 103, 104055 (2021).

    Article  ADS  Google Scholar 

  34. J. Janquart, E. Seo, O. A. Hannuksela, T. G. F. Li, and C. Van Den Broeck, Astrophys. J. Lett. 923, L1 (2021).

    Article  ADS  Google Scholar 

  35. K. Liao, M. Biesiada, and Z. H. Zhu, Chin. Phys. Lett. 39, 119801 (2022).

    Article  ADS  Google Scholar 

  36. B. P. Abbott, et al. (LIGO Scientific Collaboration), and J. Harmsand, Class. Quantum Grav. 34, 044001 (2017).

    Article  ADS  Google Scholar 

  37. S. Birrer, and A. Amara, Phys. Dark Universe 22, 189 (2018).

    Article  ADS  Google Scholar 

  38. S. Birrer, A. Shajib, D. Gilman, A. Galan, J. Aalbers, M. Millon, R. Morgan, G. Pagano, J. Park, L. Teodori, N. Tessore, M. Ueland, L. Van de Vyvere, S. Wagner-Carena, E. Wempe, L. Yang, X. Ding, T. Schmidt, D. Sluse, M. Zhang, and A. Amara, J Open Source Software 6, 3283 (2021).

    Article  ADS  Google Scholar 

  39. P. Schneider, J. Ehlers, and E. E. Falco, Gravitational lenses as astrophysical tools, In: Gravitational Lenses (Springer, Berlin, Heidelberg, 1992), pp. 467–515.

    Google Scholar 

  40. T. T. Nakamura, and S. Deguchi, Prog. Theor. Phys. Suppl. 133, 137 (1999).

    Article  ADS  Google Scholar 

  41. J. Wambsganss, Gravitational Microlensing, Dissertation for Doctoral Degree (Ludwig-Maximilians-Universitat München, München, 1990).

    Google Scholar 

  42. X. Chen, Y. Shu, G. Li, and W. Zheng, Astrophys. J. 923, 117 (2021).

    Article  ADS  Google Scholar 

  43. W. Zheng, X. Chen, G. Li, and H. Z. Chen, Astrophys. J. 931, 114 (2022).

    Article  ADS  Google Scholar 

  44. F. Xu, J. M. Ezquiaga, and D. E. Holz, Astrophys. J. 929, 9 (2022).

    Article  ADS  Google Scholar 

  45. R. Abbott, et al. (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), Phys. Rev. X 13, 011048 (2023).

    Google Scholar 

  46. P. Madau, and M. Dickinson, Annu. Rev. Astron. Astrophys. 52, 415 (2014).

    Article  ADS  Google Scholar 

  47. M. Hannam, P. Schmidt, A. Bohe, L. Haegel, S. Husa, F. Ohme, G. Pratten, and M. Pürrer, Phys. Rev. Lett. 113, 151101 (2014).

    Article  ADS  Google Scholar 

  48. LIGO Scientific Collaboration, LALSuite: LIGO Scientific Collaboration Algorithm Library Suite. Astrophysics Source Code Library, record ascl:2012.021, 2020. https://ascl.net/2012.021.

  49. A. Nitz, I. Harry, D.n Brown, C. M. Biwer, J. Willis, T. D. Canton, C. Capano, T. Dent, L. Pekowsky, A. R. Williamson, S. De, M. Cabero, B. Machenschalk, D. Macleod, P. Kumar, S. Reyes, dfinstad, F. Pannarale, S. Kumar, T. Massinger, M. Tapai, L. Singer, G. S. Cabourn Davies, S. Khan, S. Fairhurst, A. Nielsen, S. Singh, K. Chandra, shasvath, and veronica-villa, gwastro/pycbc: v2.0.2 release of PyCBC, 2022, https://doi.org/10.5281/zenodo.6324278.

  50. R. Kormann, P. Schneider, and M. Bartelmann. Astron. Astrophys. 284, 285 (1994).

    ADS  Google Scholar 

  51. T. E. Collett, Astrophys. J. 811, 20 (2015).

    Article  ADS  Google Scholar 

  52. A. R. A. C. Wierda, E. Wempe, O. A. Hannuksela, L. V. E. Koopmans, and C. Van Den Broeck, Astrophys. J. 921, 154 (2021).

    Article  ADS  Google Scholar 

  53. G. Dobler, and C. R. Keeton, Astrophys. J. 653, 1391 (2006).

    Article  ADS  Google Scholar 

  54. J. M. Diego, N. Kaiser, T. Broadhurst, P. L. Kelly, S. Rodney, T. Morishita, M. Oguri, T. W. Ross, A. Zitrin, M. Jauzac, J. Richard, L. Williams, J. Vega-Ferrero, B. Frye, and A. V. Filippenko, Astrophys. J. 857, 25 (2018).

    Article  ADS  Google Scholar 

  55. Y. Zhao, Y. Lu, C. Yan, Z. Chen, and W. T. Ni, Mon. Not. R. Astron. Soc. 522, 2951 (2023).

    Article  ADS  Google Scholar 

  56. Z. Chen, Astrophys. J. 953, 36 (2023).

    Article  ADS  Google Scholar 

  57. L. Yang, X. Ding, M. Biesiada, K. Liao, and Z. H. Zhu, Astrophys. J. 874, 139 (2019).

    Article  ADS  Google Scholar 

  58. L. Yang, S. Wu, K. Liao, X. Ding, Z. You, Z. Cao, M. Biesiada, and Z. H. Zhu, Mon. Not. R. Astron. Soc. 509, 3772 (2021).

    Article  ADS  Google Scholar 

  59. B. P. Abbott, et al. (KAGRA Collaboration, LIGO Scientific Collaboration and Virgo Collaboration), Living Rev. Relativ. 23, 3 (2020).

    Article  ADS  Google Scholar 

  60. G. Ashton, M. Hübner, P. D. Lasky, C. Talbot, K. Ackley, S. Biscoveanu, Q. Chu, A. Divakarla, P. J. Easter, B. Goncharov, F. H. Vivanco, J. Harms, M. E. Lower, G. D. Meadors, D. Melchor, E. Payne, M. D. Pitkin, J. Powell, N. Sarin, R. J. E. Smith, and E. Thrane, Astrophys. J. Suppl. Ser. 241, 27 (2019).

    Article  ADS  Google Scholar 

  61. M. Çalşkan, J. M. Ezquiaga, O. A. Hannuksela, and D. E. Holz, Phys. Rev. D 107, 063023 (2023).

    Article  ADS  Google Scholar 

  62. J. Aasi, et al. (The LIGO Scientific Collaboration), Class. Quantum Grav. 32, 074001 (2015).

    Article  ADS  Google Scholar 

  63. F. Acernese, M. Agathos, K. Agatsuma, D. Aisa, N. Allemandou, A. Allocca, J. Amarni, P. Astone, G. Balestri, G. Ballardin, F. Barone, J. P. Baronick, M. Barsuglia, A. Basti, F. Basti, T. S. Bauer, V. Bavigadda, M. Bejger, M. G. Beker, C. Belczynski, D. Bersanetti, A. Bertolini, M. Bitossi, M. A. Bizouard, S. Bloemen, M. Blom, M. Boer, G. Bogaert, D. Bondi, F. Bondu, L. Bonelli, R. Bonnand, V. Boschi, L. Bosi, T. Bouedo, C. Bradaschia, M. Branchesi, T. Briant, A. Brillet, V. Brisson, T. Bulik, H. J. Bulten, D. Buskulic, C. Buy, G. Cagnoli, E. Calloni, C. Campeggi, B. Canuel, F. Carbognani, F. Cavalier, R. Cavalieri, G. Cella, E. Cesarini, E. C. Mottin, A. Chincarini, A. Chiummo, S. Chua, F. Cleva, E. Coccia, P. F. Cohadon, A. Colla, M. Colombini, A. Conte, J. P. Coulon, E. Cuoco, A. Dalmaz, S. D’Antonio, V. Dattilo, M. Davier, R. Day, G. Debreczeni, J. Degallaix, S. Deleglise, W. D. Pozzo, H. Dereli, R. D. Rosa, L. D. Fiore, A. D. Lieto, A. D. Virgilio, M. Doets, V. Dolique, M. Drago, M. Ducrot, G. EndrÅczi, V. Fafone, S. Farinon, I. Ferrante, F. Ferrini, F. Fidecaro, I. Fiori, R. Flaminio, J. D. Fournier, S. Franco, S. Frasca, F. Frasconi, L. Gammaitoni, F. Garufi, M. Gaspard, A. Gatto, G. Gemme, B. Gendre, E. Genin, A. Gennai, S. Ghosh, L. Giacobone, A. Giazotto, R. Gouaty, M. Granata, G. Greco, P. Groot, G. M. Guidi, J. Harms, A. Heidmann, H. Heitmann, P. Hello, G. Hemming, E. Hennes, D. Hofman, P. Jaranowski, R. J. G. Jonker, M. Kasprzack, F. Kéfélian, I. Kowalska, M. Kraan, A. Królak, A. Kutynia, C. Lazzaro, M. Leonardi, N. Leroy, N. Letendre, T. G. F. Li, B. Lieunard, M. Lorenzini, V. Loriette, G. Losurdo, C. Magazzù, E. Majorana, I. Maksimovic, V. Malvezzi, N. Man, V. Mangano, M. Mantovani, F. Marchesoni, F. Marion, J. Marque, F. Martelli, L. Martellini, A. Masserot, D. Meacher, J. Meidam, F. Mezzani, C. Michel, L. Milano, Y. Minenkov, A. Moggi, M. Mohan, M. Montani, N. Morgado, B. Mours, F. Mul, M. F. Nagy, I. Nardecchia, L. Naticchioni, G. Nelemans, I. Neri, M. Neri, F. Nocera, E. Pacaud, C. Palomba, F. Paoletti, A. Paoli, A. Pasqualetti, R. Passaquieti, D. Passuello, M. Perciballi, S. Petit, M. Pichot, F. Piergiovanni, G. Pillant, A. Piluso, L. Pinard, R. Poggiani, M. Prijatelj, G. A. Prodi, M. Punturo, P. Puppo, D. S. Rabeling, I. Racz, P. Rapagnani, M. Razzano, V. Re, T. Regimbau, F. Ricci, F. Robinet, A. Rocchi, L. Rolland, R. Romano, D. Rosińska, P. Ruggi, E. Saracco, B. Sassolas, F. Schimmel, D. Sentenac, V. Sequino, S. Shah, K. Siellez, N. Straniero, B. Swinkels, M. Tacca, M. Tonelli, F. Travasso, M. Turconi, G. Vajente, N. van Bakel, M. van Beuzekom, J. F. J. van den Brand, C. Van Den Broeck, M. V. van der Sluys, J. van Heijningen, M. Vasúth, G. Vedovato, J. Veitch, D. Verkindt, F. Vetrano, A. Vicere, J. Y. Vinet, G. Visser, H. Vocca, R. Ward, M. Was, L. W. Wei, M. Yvert, A. Z. Åny, and J. P. Zendri, Class. Quantum Grav. 32, 024001 (2015).

    Article  ADS  Google Scholar 

  64. S. Vitale, and M. Evans, Phys. Rev. D 95, 064052 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuechun Chen.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2021YFC2203001). Xuechun Chen acknowledges the support from Project funded by China Postdoctoral Science Foundation (Grant No. 2023M730298).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, X., Chen, X., Hu, B. et al. Microlensing bias on the detection of strong lensing gravitational wave. Sci. China Phys. Mech. Astron. 67, 269511 (2024). https://doi.org/10.1007/s11433-023-2334-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2334-9

Navigation