Skip to main content
Log in

Crystalline-amorphization-recrystallization structural transition and emergent superconductivity in van der Waals semiconductor SiP under compression

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

van der Waals (vdW) semiconductors have gained significant attention due to their unique physical properties and promising applications, which are embedded within distinct crystallographic symmetries. Here, we report a pressure-induced crystalline-amorphization-recrystallization transition under compression in binary vdW semiconductor SiP. Upon compression to 52 GPa, bulk SiP undergoes a consecutive phase transition from pristine crystalline to amorphous phase, ultimately to recrystallized phase. By employing synchrotron X-ray diffraction experiments in conjunction with high-pressure crystal structure searching techniques, we reveal that the recrystallized SiP hosts a tetragonal structure (space group I4mm) and further transforms partially into a cubic phase (space group \(Fm\bar 3m\)). Consistently, electrical transport and alternating-current magnetic susceptibility measurements indicate the presence of three superconducting phases, which are embedded in separate crystallographic symmetries—the amorphous, tetragonal, and cubic structures. Furthermore, a high superconducting transition temperature of 12.3 K is observed in its recovered tetragonal phase during decompression. Our findings uncover a novel phase evolution path and elucidate a pressure-engineered structure-property relationship in vdW semiconductor SiP. These results not only offer a new platform to explore the transformation between different structures and functionalities, but also provide new opportunities for the design and exploration of advanced devices based on vdW materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Z. Zhang, T. Liu, B. Meng, X. H. Li, G. Z. Liang, X. N. Hu, and Q. J. Wang, Nat. Commun. 4, 1811 (2013).

    Article  ADS  Google Scholar 

  2. A. K. Geim, Science 324, 1530 (2009).

    Article  ADS  Google Scholar 

  3. X. Ling, H. Wang, S. X. Huang, F. N. Xia, and M. S. Dresselhaus, Proc. Natl. Acad. Sci. U.S.A. 112, 4523 (2015).

    Article  ADS  Google Scholar 

  4. Y. J. Xu, Z. Shi, X. Y. Shi, K. Zhang, and H. Zhang, Nanoscale 11, 14491 (2019).

    Article  Google Scholar 

  5. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, Nat. Rev. Mater. 2, 17033 (2017).

    Article  ADS  Google Scholar 

  6. W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, Mater. Today 20, 116 (2017).

    Article  Google Scholar 

  7. S. Rahman, L. Y. Wang, H. Saqib, D. Errandonea, L. Yang, Y. S. Zhao, Y. K. Zhuang, G. Y. Gao, L. Wang, and Y. J. Tian, Mater. Today Phys. 34, 101091 (2023).

    Article  Google Scholar 

  8. S. Gallego-Parra, E. Bandiello, A. Liang, E. L. da Silva, P. Rodríguez-Hernández, A. Muñoz, S. Radescu, A. H. Romero, C. Drasar, D. Errandonea, and F. J. Manjón, Mater. Today Adv. 16, 100309 (2022).

    Article  Google Scholar 

  9. L. Li, W. K. Wang, P. L. Gong, X. D. Zhu, B. Deng, X. Q. Shi, G. Y. Gao, H. Q. Li, and T. Y. Zhai, Adv. Mater. 30, 1706771 (2018).

    Article  Google Scholar 

  10. S. X. Yang, Y. H. Yang, M. H. Wu, C. G. Hu, W. F. Shen, Y. J. Gong, L. Huang, C. B. Jiang, Y. Z. Zhang, and P. M. Ajayan, Adv. Funct. Mater. 28, 1707379 (2018).

    Article  Google Scholar 

  11. S. Q. Zhao, P. Luo, S. J. Yang, X. Zhou, Z. M. Wang, C. L. Li, S. P. Wang, T. Y. Zhai, and X. T. Tao, Adv. Opt. Mater. 9, 2100198 (2021).

    Article  Google Scholar 

  12. B. Mortazavi, and T. Rabczuk, Physica E 103, 273 (2018).

    Article  ADS  Google Scholar 

  13. C. L. Li, S. P. Wang, C. N. Li, T. T. Yu, N. Jia, J. Qiao, M. Zhu, D. Liu, and X. T. Tao, J. Mater. Chem. C 6, 7219 (2018).

    Article  Google Scholar 

  14. S. L. Zhang, S. Y. Guo, Y. X. Huang, Z. Zhu, B. Cai, M. Q. Xie, W. H. Zhou, and H. B. Zeng, 2D Mater. 4, 015030 (2017).

    Article  Google Scholar 

  15. C. L. Li, S. P. Wang, X. X. Zhang, N. Jia, T. T. Yu, M. Zhu, D. Liu, and X. T. Tao, CrystEngComm 19, 6986 (2017).

    Article  Google Scholar 

  16. C. Barreteau, B. Michon, C. Besnard, and E. Giannini, J. Cryst. Growth 443, 75 (2016).

    Article  ADS  Google Scholar 

  17. K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. C. Castro Neto, Science 353, 461 (2016).

    Article  Google Scholar 

  18. C. Si, Z. M. Sun, and F. Liu, Nanoscale 8, 3207 (2016).

    Article  ADS  Google Scholar 

  19. H. Yang, S. W. Kim, M. Chhowalla, and Y. H. Lee, Nat. Phys. 13, 931 (2017).

    Article  Google Scholar 

  20. L. G. P. Martins, R. Comin, M. J. S. Matos, M. S. C. Mazzoni, B. R. A. Neves, and M. Yankowitz, Appl. Phys. Rev. 10, 011313 (2023).

    Article  Google Scholar 

  21. L. X. Liu, V. V. Struzhkin, and J. J. Ying, Phys. Rev. B 100, 214516 (2019).

    Article  ADS  Google Scholar 

  22. U. Schwarz, and K. Syassen, High Pressure Res. 9, 148 (1992).

    Article  ADS  Google Scholar 

  23. X. C. Pan, X. L. Chen, H. M. Liu, Y. Q. Feng, Z. X. Wei, Y. H. Zhou, Z. H. Chi, L. Pi, F. Yen, F. Q. Song, X. G. Wan, Z. R. Yang, B. G. Wang, G. H. Wang, and Y. H. Zhang, Nat. Commun. 6, 7805 (2015).

    Article  ADS  Google Scholar 

  24. C. Prescher, and V. B. Prakapenka, High Pressure Res. 35, 223 (2015).

    Article  ADS  Google Scholar 

  25. B. A. Hunter, In Rietica—A visual rietveld program. Proceedings of the International Union of Crystallography Commission on Powder Diffraction Newsletter (1998). p. 20.

  26. H. K. Mao, J. Xu, and P. M. Bell, J. Geophys. Res. 91, 4673 (1986).

    Article  ADS  Google Scholar 

  27. G. Kresse, and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  28. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  29. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  30. G. Kresse, and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  31. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  32. M. Kamitani, M. S. Bahramy, T. Nakajima, C. Terakura, D. Hashizume, T. Arima, and Y. Tokura, Phys. Rev. Lett. 119, 207001 (2017).

    Article  ADS  Google Scholar 

  33. F. Birch, Phys. Rev. 71, 809 (1947).

    Article  ADS  Google Scholar 

  34. V. L. Ginzburg, and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).

    Google Scholar 

  35. A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).

    Article  ADS  Google Scholar 

  36. W. L. McMillan, Phys. Rev. 167, 331 (1968).

    Article  ADS  Google Scholar 

  37. T. Tomita, J. J. Hamlin, J. S. Schilling, D. G. Hinks, and J. D. Jorgensen, Phys. Rev. B 64, 092505 (2001).

    Article  ADS  Google Scholar 

  38. F. Ke, H. N. Dong, Y. B. Chen, J. B. Zhang, C. L. Liu, J. K. Zhang, Y. Gan, Y. H. Han, Z. Q. Chen, C. X. Gao, J. S. Wen, W. G. Yang, X. J. Chen, V. V. Struzhkin, H. K. Mao, and B. Chen, Adv. Mater. 29, 1701983 (2017).

    Article  Google Scholar 

  39. N. X. Qian, C. H. Chen, Y. H. Zhou, S. Y. Wang, L. Y. Li, R. R. Zhang, X. D. Zhu, Y. F. Yuan, X. L. Chen, C. An, Y. Zhou, M. Zhang, X. P. Yang, and Z. R. Yang, NPG Asia Mater. 15, 59 (2023).

    Article  ADS  Google Scholar 

  40. Y. F. Yuan, Y. H. Zhou, Z. Chen, C. H. Chen, X. L. Chen, J. Wang, Y. Zhou, C. An, M. Zhang, X. D. Zhu, R. R. Zhang, L. L. Zhang, and Z. R. Yang, Mater. Today Phys. 25, 100707 (2022).

    Article  Google Scholar 

  41. L. Z. Deng, T. Bontke, R. Dahal, Y. Xie, B. Gao, X. Li, K. T. Yin, M. Gooch, D. Rolston, T. Chen, Z. Wu, Y. M. Ma, P. C. Dai, and C. W. Chu, Proc. Natl. Acad. Sci. U.S.A. 118, e2108938118 (2021).

    Article  Google Scholar 

  42. M. Krbal, A. V. Kolobov, J. Haines, P. Fons, C. Levelut, R. Le Parc, M. Hanfland, J. Tominaga, A. Pradel, and M. Ribes, Phys. Rev. Lett. 103, 115502 (2009).

    Article  ADS  Google Scholar 

  43. N. Hamaya, K. Sato, K. Usui-Watanabe, K. Fuchizaki, Y. Fujii, and Y. Ohishi, Phys. Rev. Lett. 79, 4597 (1997).

    Article  ADS  Google Scholar 

  44. C. L. Lin, X. Yong, J. S. Tse, J. S. Smith, S. V. Sinogeikin, C. Kenney-Benson, and G. Y. Shen, Phys. Rev. Lett. 119, 135701 (2017).

    Article  ADS  Google Scholar 

  45. L. Wang, X. L. Huang, D. Li, F. F. Li, Z. L. Zhao, W. B. Li, Y. P. Huang, G. Wu, Q. Zhou, B. B. Liu, and T. Cui, J. Phys. Chem. C 119, 19312 (2015).

    Article  Google Scholar 

  46. D. Machon, F. Meersman, M. C. Wilding, M. Wilson, and P. F. McMillan, Prog. Mater. Sci. 61, 216 (2014).

    Article  Google Scholar 

  47. V. L. Deringer, N. Bernstein, G. Csányi, C. Ben Mahmoud, M. Ceriotti, M. Wilson, D. A. Drabold, and S. R. Elliott, Nature 589, 59 (2021).

    Article  ADS  Google Scholar 

  48. P. F. McMillan, M. Wilson, D. Daisenberger, and D. Machon, Nat. Mater. 4, 680 (2005).

    Article  ADS  Google Scholar 

  49. S. K. Deb, M. Wilding, M. Somayazulu, and P. F. McMillan, Nature 414, 528 (2001).

    Article  ADS  Google Scholar 

  50. C. R. Zhang, J. W. Huang, K. Zhai, K. Akhtari, Z. W. Shen, L. Y. Ao, Z. Y. Li, F. Qin, Y. K. Chang, L. Zhou, M. Tang, X. T. Dai, C. Y. Qiu, Y. Zhang, L. Wang, Z. Y. Liu, Y. J. Tian, M. S. Bahramy, and H. T. Yuan, Nat. Commun. 13, 6938 (2022).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonghui Zhou, Xiaoping Yang or Zhaorong Yang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2023YFA1406102, and 2022YFA1602603), the National Natural Science Foundation of China (Grant Nos. 12374049, 12174397, 12204420, 12204004, 12174395, U19A2093, and 12004004), the Natural Science Foundation of Anhui Province (Grant Nos. 2308085MA16, and 2308085QA18), and the Basic Research Program of the Chinese Academy of Sciences Based on Major Scientific Infrastructures (Grant No. JZHKYPT-2021-08). Yonghui Zhou was supported by the Youth Innovation Promotion Association CAS (Grant No. 2020443). A portion of this work was supported by the High Magnetic Field Laboratory of Anhui Province under Contract No. AHHM-FX-2021-03. The high-pressure synchrotron X-ray diffraction experiments were performed at the beamline BL15U1, Shanghai Synchrotron Radiation Facility.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplemental materials for

11433_2023_2325_MOESM1_ESM.pdf

Crystalline-amorphization-recrystallization structural transition and emergent superconductivity in van der Waals semiconductor SiP under compression

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Ding, Z., Zhou, Y. et al. Crystalline-amorphization-recrystallization structural transition and emergent superconductivity in van der Waals semiconductor SiP under compression. Sci. China Phys. Mech. Astron. 67, 258211 (2024). https://doi.org/10.1007/s11433-023-2325-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2325-x

Navigation