Skip to main content
Log in

Experimental observation of multiple topological nodal structure in LaSb2

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Unconventional fermions in the immensely studied topological semimetals are the source for rich exotic topological properties. Here, using symmetry analysis and first-principles calculations, we propose the coexistence of multiple topological nodal structure in LaSb2, including topological nodal surfaces, nodal lines and in particular eightfold degenerate nodal points, which have been scarcely observed in a single material. Further, utilizing angle-resolved photoemission spectroscopy, we confirm the existence of nodal surfaces and eightfold degenerate nodal points in LaSb2. The intriguing multiple topological nodal structure might play a crucial role in giving rise to the large linear magnetoresistance. Our work renews the insights into the exotic topological phenomena in LaSb2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011), arXiv: 1007.0016.

    Article  ADS  Google Scholar 

  2. H. Weng, X. Dai, and Z. Fang, J. Phys.-Condens. Matter 28, 303001 (2016), arXiv: 1603.04744.

    Article  PubMed  Google Scholar 

  3. Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Science 343, 864 (2014), arXiv: 1310.0391.

    Article  ADS  PubMed  CAS  Google Scholar 

  4. B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Phys. Rev. X 5, 031013 (2015), arXiv: 1502.04684.

    Google Scholar 

  5. A. A. Soluyanov, D. Gresch, Z. Wang, Q. S. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Nature 527, 495 (2015), arXiv: 1507.01603.

    Article  ADS  PubMed  CAS  Google Scholar 

  6. S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C. C. Lee, S. M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. K. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Science 349, 613 (2015), arXiv: 1502.03807.

    Article  ADS  PubMed  CAS  Google Scholar 

  7. N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018), arXiv: 1705.01111.

    Article  ADS  CAS  Google Scholar 

  8. A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84, 235126 (2011), arXiv: 1110.1089.

    Article  ADS  Google Scholar 

  9. C. Fang, H. Weng, X. Dai, and Z. Fang, Chin. Phys. B 25, 117106 (2016), arXiv: 1609.05414.

    Article  ADS  Google Scholar 

  10. R. Yu, Z. Fang, X. Dai, and H. Weng, Front. Phys. 12, 127202 (2017).

    Article  ADS  Google Scholar 

  11. S. Y. Yang, H. Yang, E. Derunova, S. S. P. Parkin, B. Yan, and M. N. Ali, Adv. Phys.-X 3, 1414631 (2018), arXiv: 1707.04523.

    Google Scholar 

  12. Y. K. Song, G. W. Wang, S. C. Li, W. L. Liu, X. L. Lu, Z. T. Liu, Z. J. Li, J. S. Wen, Z. P. Yin, Z. H. Liu, and D. W. Shen, Phys. Rev. Lett. 124, 056402 (2020), arXiv: 1909.04754.

    Article  ADS  PubMed  CAS  Google Scholar 

  13. Z. Liu, R. Lou, P. Guo, Q. Wang, S. Sun, C. Li, S. Thirupathaiah, A. Fedorov, D. Shen, K. Liu, H. Lei, and S. Wang, Phys. Rev. X 8, 031044 (2018), arXiv: 1712.03048.

    Google Scholar 

  14. T. Bzdušek, Q. S. Wu, A. Rüegg, M. Sigrist, and A. A. Soluyanov, Nature 538, 75 (2016), arXiv: 1604.03112.

    Article  ADS  PubMed  Google Scholar 

  15. Q. Yan, R. Liu, Z. Yan, B. Liu, H. Chen, Z. Wang, and L. Lu, Nat. Phys. 14, 461 (2018), arXiv: 1706.05500.

    Article  CAS  Google Scholar 

  16. W. Wu, Y. Liu, S. Li, C. Zhong, Z. M. Yu, X. L. Sheng, Y. X. Zhao, and S. A. Yang, Phys. Rev. B 97, 115125 (2018), arXiv: 1712.09773.

    Article  ADS  CAS  Google Scholar 

  17. B. B. Fu, C. J. Yi, T. T. Zhang, M. Caputo, J. Z. Ma, X. Gao, B. Q. Lv, L. Y. Kong, Y. B. Huang, P. Richard, M. Shi, V. N. Strocov, C. Fang, H. M. Weng, Y. G. Shi, T. Qian, and H. Ding, Sci. Adv. 5, eaau6459 (2019).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  18. C. Song, L. Jin, P. Song, H. Rong, W. Zhu, B. Liang, S. Cui, Z. Sun, L. Zhao, Y. Shi, X. Zhang, G. Liu, and X. J. Zhou, Phys. Rev. B 105, L161104 (2022), arXiv: 2303.11179.

    Article  ADS  CAS  Google Scholar 

  19. S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, Science 347, 294 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  20. Z. Rao, H. Li, T. Zhang, S. Tian, C. Li, B. Fu, C. Tang, L. Wang, Z. Li, W. Fan, J. Li, Y. Huang, Z. Liu, Y. Long, C. Fang, H. Weng, Y. Shi, H. Lei, Y. Sun, T. Qian, and H. Ding, Nature 567, 496 (2019).

    Article  ADS  PubMed  CAS  Google Scholar 

  21. G. Bian, T. R. Chang, R. Sankar, S. Y. Xu, H. Zheng, T. Neupert, C. K. Chiu, S. M. Huang, G. Chang, I. Belopolski, D. S. Sanchez, M. Neupane, N. Alidoust, C. Liu, B. K. Wang, C. C. Lee, H. T. Jeng, C. Zhang, Z. Yuan, S. Jia, A. Bansil, F. Chou, H. Lin, and M. Z. Hasan, Nat. Commun. 7, 10556 (2016).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  22. L. M. Schoop, M. N. Ali, C. Straßer, A. Topp, A. Varykhalov, D. Marchenko, V. Duppel, S. S. P. Parkin, B. V. Lotsch, and C. R. Ast, Nat. Commun. 7, 11696 (2016), arXiv: 1509.00861.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  23. M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, Nature 514, 205 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  24. X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen, Phys. Rev. X 5, 031023 (2015), arXiv: 1503.01304.

    Google Scholar 

  25. H. Li, H. He, H. Z. Lu, H. Zhang, H. Liu, R. Ma, Z. Fan, S. Q. Shen, and J. Wang, Nat. Commun. 7, 10301 (2016), arXiv: 1507.06470.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  26. K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys. Rev. D 78, 074033 (2008), arXiv: 0808.3382.

    Article  ADS  Google Scholar 

  27. N. B. M. Schröter, D. Pei, M. G. Vergniory, Y. Sun, K. Manna, F. de Juan, J. A. Krieger, V. Süss, M. Schmidt, P. Dudin, B. Bradlyn, T. K. Kim, T. Schmitt, C. Cacho, C. Felser, V. N. Strocov, and Y. Chen, Nat. Phys. 15, 759 (2019), arXiv: 1812.03310.

    Article  Google Scholar 

  28. B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava, and B. A. Bernevig, Science 353, aaf5037 (2016).

    Article  PubMed  Google Scholar 

  29. B. J. Wieder, Y. Kim, A. M. Rappe, and C. L. Kane, Phys. Rev. Lett. 116, 186402 (2016), arXiv: 1512.00074.

    Article  ADS  PubMed  Google Scholar 

  30. P. J. Guo, Y. W. Wei, K. Liu, Z. X. Liu, and Z. Y. Lu, Phys. Rev. Lett. 127, 176401 (2021).

    Article  ADS  PubMed  CAS  Google Scholar 

  31. J. P. Sun, D. Zhang, and K. Chang, Phys. Rev. B 96, 045121 (2017).

    Article  ADS  Google Scholar 

  32. P. Tang, Q. Zhou, and S. C. Zhang, Phys. Rev. Lett. 119, 206402 (2017), arXiv: 1706.03817.

    Article  ADS  PubMed  Google Scholar 

  33. L. Wu, F. Tang, and X. Wan, Phys. Rev. B 104, 045107 (2021), arXiv: 2102.09515.

    Article  ADS  CAS  Google Scholar 

  34. Y. Xia, and G. Li, Phys. Rev. B 102, 079902 (2020).

    Article  ADS  Google Scholar 

  35. X. Zhang, Z. M. Yu, X. L. Sheng, H. Y. Yang, and S. A. Yang, Phys. Rev. B 95, 235116 (2017), arXiv: 1704.03703.

    Article  ADS  Google Scholar 

  36. B. Q. Lv, Z. L. Feng, Q. N. Xu, X. Gao, J. Z. Ma, L. Y. Kong, P. Richard, Y. B. Huang, V. N. Strocov, C. Fang, H. M. Weng, Y. G. Shi, T. Qian, and H. Ding, Nature 546, 627 (2017).

    Article  ADS  PubMed  CAS  Google Scholar 

  37. J. Z. Ma, J. B. He, Y. F. Xu, B. Q. Lv, D. Chen, W. L. Zhu, S. Zhang, L. Y. Kong, X. Gao, L. Y. Rong, Y. B. Huang, P. Richard, C. Y. Xi, E. S. Choi, Y. Shao, Y. L. Wang, H. J. Gao, X. Dai, C. Fang, H. M. Weng, G. F. Chen, T. Qian, and H. Ding, Nat. Phys. 14, 349 (2018), arXiv: 1706.02664.

    Article  CAS  Google Scholar 

  38. Z. P. Sun, C. Q. Hua, X. L. Liu, Z. T. Liu, M. Ye, S. Qiao, Z. H. Liu, J. S. Liu, Y. F. Guo, Y. H. Lu, and D. W. Shen, Phys. Rev. B 101, 155114 (2020).

    Article  ADS  CAS  Google Scholar 

  39. L. M. Schoop, A. Topp, J. Lippmann, F. Orlandi, L. Müchler, M. G. Vergniory, Y. Sun, A. W. Rost, V. Duppel, M. Krivenkov, S. Sheoran, P. Manuel, A. Varykhalov, B. Yan, R. K. Kremer, C. R. Ast, and B. V. Lotsch, Sci. Adv. 4, eaar2317 (2018), arXiv: 1707.03408.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. T. Berry, L. A. Pressley, W. A. Phelan, T. T. Tran, and T. M. McQueen, Chem. Mater. 32, 5827 (2020).

    Article  CAS  Google Scholar 

  41. H. Rong, Z. Huang, X. Zhang, S. Kumar, F. Zhang, C. Zhang, Y. Wang, Z. Hao, Y. Cai, L. Wang, C. Liu, X. Ma, S. Guo, B. Shen, Y. Liu, S. Cui, K. Shimada, Q. Wu, J. Lin, Y. Yao, Z. Wang, H. Xu, and C. Chen, npj Quantum Mater. 8, 29 (2023), arXiv: 2208.02967.

    Article  ADS  CAS  Google Scholar 

  42. I. Palacio, J. Obando-Guevara, L. Chen, M. N. Nair, M. A. González Barrio, E. Papalazarou, P. Le Fèvre, R. F. Luccas, H. Suderow, P. Canfield, A. Taleb-Ibrahimi, E. G. Michel, A. Mascaraque, and A. Tejeda, arXiv: 2202.03161.

  43. S. L. Bud’ko, S. Huyan, P. Herrera-Siklody, and P. C. Canfield, arXiv: 2208.04997.

  44. S. Guo, D. P. Young, P. W. Adams, X. S. Wu, J. Y. Chan, G. T. McCandless, and J. F. Ditusa, Phys. Rev. B 83, 174520 (2011).

    Article  ADS  Google Scholar 

  45. J. A. Galvis, H. Suderow, S. Vieira, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B 87, 214504 (2013), arXiv: 1306.3042.

    Article  ADS  Google Scholar 

  46. S. L. Bud’ko, P. C. Canfield, C. H. Mielke, and A. H. Lacerda, Phys. Rev. B 57, 13624 (1998).

    Article  ADS  Google Scholar 

  47. R. G. Goodrich, D. Browne, R. Kurtz, D. P. Young, J. F. Ditusa, P. W. Adams, and D. Hall, Phys. Rev. B 69, 125114 (2004).

    Article  ADS  Google Scholar 

  48. D. P. Young, R. G. Goodrich, J. F. DiTusa, S. Guo, P. W. Adams, J. Y. Chan, and D. Hall, Appl. Phys. Lett. 82, 3713 (2003), arXiv: cond-mat/0305116.

    Article  ADS  CAS  Google Scholar 

  49. M. M. Parish, and P. B. Littlewood, Nature 426, 162 (2003), arXiv: cond-mat/0312020.

    Article  ADS  PubMed  CAS  Google Scholar 

  50. X. Wang, Y. Du, S. Dou, and C. Zhang, Phys. Rev. Lett. 108, 266806 (2012).

    Article  ADS  PubMed  Google Scholar 

  51. M. K. Dasoundhi, I. Rajput, D. Kumar, and A. Lakhani, J. Phys. D-Appl. Phys. 54, 195303 (2021).

    Article  ADS  CAS  Google Scholar 

  52. D. X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, and N. P. Ong, Science 329, 821 (2010).

    Article  ADS  PubMed  CAS  Google Scholar 

  53. A. A. Abrikosov, Europhys. Lett. 49, 789 (2000).

    Article  ADS  CAS  Google Scholar 

  54. P. Ruszała, M. J. Winiarski, and M. Samsel-Czekała, Acta Phys. Pol. A 138, 748 (2020).

    Article  ADS  Google Scholar 

  55. A. Leonhardt, M. M. Hirschmann, N. Heinsdorf, X. Wu, D. H. Fabini, and A. P. Schnyder, Phys. Rev. Mater. 5, 124202 (2021), arXiv: 2108.05375.

    Article  CAS  Google Scholar 

  56. A. A. Abrikosov, Phys. Rev. B 58, 2788 (1998).

    Article  ADS  CAS  Google Scholar 

  57. G. Kresse, and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  CAS  Google Scholar 

  58. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  CAS  Google Scholar 

  59. Y. C. Yang, Z. T. Liu, J. S. Liu, Z. H. Liu, W. L. Liu, X. L. Lu, H. P. Mei, A. Li, M. Ye, S. Qiao, and D. W. Shen, Nucl. Sci. Tech. 32, 31 (2021).

    Article  Google Scholar 

  60. K. F. F. Fischer, N. Roth, and B. B. Iversen, J. Appl. Phys. 125, 045110 (2019).

    Article  ADS  Google Scholar 

  61. S. Klemenz, S. Lei, and L. M. Schoop, Annu. Rev. Mater. Res. 49, 185 (2019), arXiv: 1808.06619.

    Article  ADS  CAS  Google Scholar 

  62. J. B. He, D. Chen, W. L. Zhu, S. Zhang, L. X. Zhao, Z. A. Ren, and G. F. Chen, Phys. Rev. B 95, 195165 (2017), arXiv: 1703.03211.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huaiqiang Wang, Yanfeng Guo, Haijun Zhang or Dawei Shen.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2023YFA1406304), the National Natural Science Foundation of China (Grant Nos. U2032208, 12222413, 11874264, 12074181, 11834006, and 12104217), and the Natural Science Foundation of Shanghai (Grant Nos. 23ZR1482200, 22ZR1473300, and 14ZR1447600). Yanfeng Guo acknowledges the Shanghai Science and Technology Innovation Action Plan (Grant No. 21JC1402000), the Open Projects from State Key Laboratory of Functional Materials for Informatics (Grant No. SKL2022), and the Double First-Class Initiative Fund of ShanghaiTech University. Jishan Liu thanks the fund of Science and Technology on Surface Physics and Chemistry Laboratory (Grant No. 6142A02200102). Part of this research used Beamline 03U of the Shanghai Synchrotron Radiation Facility, which is supported by ME2 Project (Grant No. 11227902) from the National Natural Science Foundation of China. Haijun Zhang is supported by the National Key Projects for Research and Development of China (Grant No. 2021YFA1400400), the Fundamental Research Funds for the Central Universities (Grant No. 020414380185), the Natural Science Foundation of Jiangsu Province (Grant No. BK20200007), and the Fok Ying-Tong Education Foundation of China (Grant No. 161006). We thank Dexi Shao and Gang Mu for the useful discussion.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Wang, F., Wang, H. et al. Experimental observation of multiple topological nodal structure in LaSb2. Sci. China Phys. Mech. Astron. 67, 247411 (2024). https://doi.org/10.1007/s11433-023-2320-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2320-7

Navigation