Skip to main content
Log in

Primordial black hole mass functions as a probe of cosmic origin

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We discuss a novel window to probe the origin of our universe via the mass functions of primordial black holes (PBHs). The mass functions of PBHs are simply estimated using the conventional Press-Schechter formalism for two paradigms of cosmic origin, including inflationary ΛCDM and bounce cosmology. The standard inflationary ΛCDM model cannot generate an appreciable number of massive PBHs; however, non-trivial inflation models with blue-tilted power spectra at small scales and matter bounce cosmology provide formation mechanisms for heavy PBHs, which in turn, may seed the observed supermassive black holes (SMBHs). By fitting the SMBH mass functions at high redshift (z ∼ 6) derived from Sloan Digital Sky Survey (SDSS) and Canada-France High-z Quasar Survey (CFHQS) quasars, for two paradigms of cosmic origin, we derive constraints on the PBH density fraction fPBH at z ∼ 6 and the characteristic mass M, with the prior assumption that all SMBHs stem from PBHs. We demonstrate that this newly proposed procedure, relying on astronomical measurements that utilize deep-field surveys of SMBHs at high redshift, can be used to constrain models of cosmic origin. Additionally, although not the main focus of this paper, we evolve the mass function from z ∼ 6 to z ∼ 0 through an assumption of 3 × 108-year Eddington’s accretion, and give a rough estimation of fPBH at z ∼ 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Aghanim, et al. (Planck Collaboration), Astron. Astrophys. 641, A5 (2020), arXiv: 1907.12875.

    Article  Google Scholar 

  2. S. Alam, M. Aubert, S. Avila, C. Balland, J. E. Bautista, M. A. Bershady, D. Bizyaev, M. R. Blanton, A. S. Bolton, J. Bovy, J. Brinkmann, J. R. Brownstein, E. Burtin, S. Chabanier, M. J. Chapman, P. D. Choi, C. H. Chuang, J. Comparat, M. C. Cousinou, A. Cuceu, K. S. Dawson, S. de la Torre, A. de Mattia, V. S. Agathe, H. M. des Bourboux, S. Escoffier, T. Etourneau, J. Farr, A. Font-Ribera, P. M. Frinchaboy, S. Fromenteau, H. Gil-Marín, J. M. Le Goff, A. X. Gonzalez-Morales, V. Gonzalez-Perez, K. Grabowski, J. Guy, A. J. Hawken, J. Hou, H. Kong, J. Parker, M. Klaene, J. P. Kneib, S. Lin, D. Long, B. W. Lyke, A. de la Macorra, P. Martini, K. Masters, F. G. Mohammad, J. Moon, E. M. Mueller, A. Muñoz-Gutiérrez, A. D. Myers, S. Nadathur, R. Neveux, J. A. Newman, P. Noterdaeme, A. Oravetz, D. Oravetz, N. Palanque-Delabrouille, K. Pan, R. Paviot, W. J. Percival, I. Pérez-Ràfols, P. Petitjean, M. M. Pieri, A. Prakash, A. Raichoor, C. Ravoux, M. Rezaie, J. Rich, A. J. Ross, G. Rossi, R. Ruggeri, V. Ruhlmann-Kleider, A. G. Sánchez, F. J. Sánchez, J. R. Sánchez-Gallego, C. Sayres, D. P. Schneider, H. J. Seo, A. Shafieloo, A. Slosar, A. Smith, J. Stermer, A. Tamone, J. L. Tinker, R. Tojeiro, M. Vargas-Magaña, A. Variu, Y. Wang, B. A. Weaver, A. M. Weijmans, C. Yèche, P. Zarrouk, C. Zhao, G. B. Zhao, and Z. Zheng, Phys. Rev. D 103, 083533 (2021), arXiv: 2007.08991.

    Article  ADS  Google Scholar 

  3. S. Pandey, et al. (DES Collaboration), Phys. Rev. D 106, 043520 (2022), arXiv: 2105.13545.

    Article  ADS  Google Scholar 

  4. A. H. Guth, Phys. Rev. D 23, 347 (1981).

    Article  ADS  Google Scholar 

  5. A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).

    Article  ADS  Google Scholar 

  6. A. D. Linde, Phys. Lett. B 108, 389 (1982).

    Article  ADS  Google Scholar 

  7. A. Albrecht, and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).

    Article  ADS  Google Scholar 

  8. V. Mukhanov, Phys. Rep. 215, 203 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  9. P. Bull, Y. Akrami, J. Adamek, T. Baker, E. Bellini, J. Beltrán Jiménez, E. Bentivegna, S. Camera, S. Clesse, J. H. Davis, E. Di Dio, J. Enander, A. Heavens, L. Heisenberg, B. Hu, C. Llinares, R. Maartens, E. Mörtsell, S. Nadathur, J. Noller, R. Pasechnik, M. S. Pawlowski, T. S. Pereira, M. Quartin, A. Ricciardone, S. Riemer-Sørensen, M. Rinaldi, J. Sakstein, I. D. Saltas, V. Salzano, I. Sawicki, A. R. Solomon, D. Spolyar, G. D. Starkman, D. Steer, I. Tereno, L. Verde, F. Villaescusa-Navarro, M. von Strauss, and H. A. Winther, Phys. Dark Universe 12, 56 (2016), arXiv: 1512.05356.

    Article  ADS  Google Scholar 

  10. J. S. Bullock, and M. Boylan-Kolchin, Annu. Rev. Astron. Astrophys. 55, 343 (2017), arXiv: 1707.04256.

    Article  ADS  Google Scholar 

  11. L. Verde, T. Treu, and A. G. Riess, Nat. Astron. 3, 891 (2019), arXiv: 1907.10625.

    Article  ADS  Google Scholar 

  12. E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, Class. Quantum Grav. 38, 153001 (2021), arXiv: 2103.01183.

    Article  ADS  Google Scholar 

  13. R. Brandenberger, V. Mukhanov, and A. Sornborger, Phys. Rev. D 48, 1629 (1993), arXiv: gr-qc/9303001.

    Article  ADS  MathSciNet  Google Scholar 

  14. P. Peter, and N. Pinto-Neto, Phys. Rev. D 78, 063506 (2008), arXiv: 0809.2022.

    Article  ADS  MathSciNet  Google Scholar 

  15. Y. F. Cai, D. A. Easson, and R. Brandenberger, J. Cosmol. Astropart. Phys. 2012(8), 020 (2012), arXiv: 1206.2382.

    Article  Google Scholar 

  16. Y. F. Cai, Sci. China-Phys. Mech. Astron. 57, 1414 (2014), arXiv: 1405.1369.

    Article  ADS  Google Scholar 

  17. R. Brandenberger, and P. Peter, Found. Phys. 47, 797 (2017), arXiv: 1603.05834.

    Article  ADS  MathSciNet  Google Scholar 

  18. J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, Phys. Rev. D 64, 123522 (2001), arXiv: hep-th/0103239.

    Article  ADS  MathSciNet  Google Scholar 

  19. P. J. Steinhardt, and N. Turok, Phys. Rev. D 65, 126003 (2002), arXiv: hep-th/0111098.

    Article  ADS  Google Scholar 

  20. R. Brandenberger, and C. Vafa, Nucl. Phys. B 316, 391 (1989).

    Article  ADS  Google Scholar 

  21. A. Nayeri, R. H. Brandenberger, and C. Vafa, Phys. Rev. Lett. 97, 021302 (2006), arXiv: hep-th/0511140.

    Article  ADS  Google Scholar 

  22. T. Battefeld, and S. Watson, Rev. Mod. Phys. 78, 435 (2006), arXiv: hep-th/0510022.

    Article  ADS  Google Scholar 

  23. G. F. R. Ellis, and R. Maartens, Class. Quantum Grav. 21, 223 (2004), arXiv: gr-qc/0211082.

    Article  ADS  Google Scholar 

  24. G. F. R. Ellis, J. Murugan, and C. G. Tsagas, Class. Quantum Grav. 21, 233 (2004), arXiv: gr-qc/0307112.

    Article  ADS  Google Scholar 

  25. P. Creminelli, A. Nicolis, and E. Trincherini, J. Cosmol. Astropart. Phys. 2010, 021 (2010), arXiv: 1007.0027.

    Article  Google Scholar 

  26. A. Ilyas, M. Zhu, Y. Zheng, and Y. F. Cai, J. High Energ. Phys. 2021, 141 (2021).

    Article  Google Scholar 

  27. R. H. Brandenberger, S. Kanno, J. Soda, D. A. Easson, J. Khoury, P. Martineau, A. Nayeri, and S. P. Patil, J. Cosmol. Astropart. Phys. 2006, 009 (2006), arXiv: hep-th/0608186.

    Article  Google Scholar 

  28. Y. F. Cai, A. Marcianò, D. G. Wang, and E. Wilson-Ewing, Universe 3, 1 (2017).

    Article  ADS  Google Scholar 

  29. Y. B. Zel’dovich, and I. D. Novikov, Sov. Astron. 10, 602 (1967).

    ADS  Google Scholar 

  30. S. Hawking, Mon. Not. R. Astron. Soc. 152, 75 (1971).

    Article  ADS  Google Scholar 

  31. B. J. Carr, and S. W. Hawking, Mon. Not. R. Astron. Soc. 168, 399 (1974).

    Article  ADS  Google Scholar 

  32. M. Sasaki, T. Suyama, T. Tanaka, and S. Yokoyama, Class. Quantum Grav. 35, 063001 (2018), arXiv: 1801.05235.

    Article  ADS  Google Scholar 

  33. M. Y. Khlopov, Res. Astron. Astrophys. 10, 495 (2010), arXiv: 0801.0116.

    Article  ADS  Google Scholar 

  34. X. Wang, Y. Zhang, R. Kimura, and M. Yamaguchi, Sci. China-Phys. Mech. Astron. 66, 260462 (2023), arXiv: 2209.12911.

    Article  ADS  Google Scholar 

  35. B. Carr, and J. Silk, Mon. Not. R. Astron. Soc. 478, 3756 (2018), arXiv: 1801.00672.

    Article  ADS  Google Scholar 

  36. M. Volonteri, Astron. Astrophys. Rev. 18, 279 (2010), arXiv: 1003.4404.

    Article  ADS  Google Scholar 

  37. A. Dressler, Symp.-Int. Astron. Union 134, 217 (1989).

    Article  Google Scholar 

  38. B. Devecchi, and M. Volonteri, Astrophys. J. 694, 302 (2009), arXiv: 0810.1057.

    Article  ADS  Google Scholar 

  39. J. Magorrian, S. Tremaine, D. Richstone, R. Bender, G. Bower, A. Dressler, S. M. Faber, K. Gebhardt, R. Green, C. Grillmair, J. Kormendy, and T. Lauer, Astron. J. 115, 2285 (1998), arXiv: astro-ph/9708072.

    Article  ADS  Google Scholar 

  40. K. Gültekin, D. O. Richstone, K. Gebhardt, T. R. Lauer, S. Tremaine, M. C. Aller, R. Bender, A. Dressler, S. M. Faber, A. V. Filippenko, R. Green, L. C. Ho, J. Kormendy, J. Magorrian, J. Pinkney, and C. Siopis, Astrophys. J. 698, 198 (2009), arXiv: 0903.4897.

    Article  ADS  Google Scholar 

  41. N. J. McConnell, C. P. Ma, K. Gebhardt, S. A. Wright, J. D. Murphy, T. R. Lauer, J. R. Graham, and D. O. Richstone, Nature 480, 215 (2011), arXiv: 1112.1078.

    Article  ADS  Google Scholar 

  42. Z. Haiman, Astrophys. J. 613, 36 (2004), arXiv: astro-ph/0404196.

    Article  ADS  Google Scholar 

  43. S. L. Shapiro, Astrophys. J. 620, 59 (2005), arXiv: astro-ph/0411156.

    Article  ADS  Google Scholar 

  44. K. Inayoshi, E. Visbal, and Z. Haiman, Annu. Rev. Astron. Astrophys. 58, 27 (2020), arXiv: 1911.05791.

    Article  ADS  Google Scholar 

  45. R. Bean, and J. Magueijo, Phys. Rev. D 66, 063505 (2002), arXiv: astro-ph/0204486.

    Article  ADS  Google Scholar 

  46. C. T. Byrnes, P. S. Cole, and S. P. Patil, J. Cosmol. Astropart. Phys. 2019(6), 028 (2019), arXiv: 1811.11158.

    Article  Google Scholar 

  47. B. Carr, and F. Kühnel, Annu. Rev. Nucl. Part. Sci. 70, 355 (2020), arXiv: 2006.02838.

    Article  ADS  Google Scholar 

  48. B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, Rep. Prog. Phys. 84, 116902 (2021), arXiv: 2002.12778.

    Article  ADS  Google Scholar 

  49. J. Quintin, and R. H. Brandenberger, J. Cosmol. Astropart. Phys. 2016(11), 029 (2016), arXiv: 1609.02556.

    Article  ADS  Google Scholar 

  50. J. W. Chen, J. Liu, H. L. Xu, and Y. F. Cai, Phys. Lett. B 769, 561 (2017), arXiv: 1609.02571.

    Article  ADS  Google Scholar 

  51. J. W. Chen, M. Zhu, S. F. Yan, Q. Q. Wang, and Y. F. Cai, J. Cosmol. Astropart. Phys. 2023(1), 015 (2023), arXiv: 2207.14532.

    Article  Google Scholar 

  52. B. J. Carr, and A. A. Coley, Int. J. Mod. Phys. D 20, 2733 (2011), arXiv: 1104.3796.

    Article  ADS  Google Scholar 

  53. B. Carr, T. Clifton, and A. Coley, arXiv: 1704.02919.

  54. W. H. Press, and P. Schechter, Astrophys. J. 187, 425 (1974).

    Article  ADS  Google Scholar 

  55. B. J. Carr, Astrophys. J. 201, 1 (1975).

    Article  ADS  Google Scholar 

  56. C. J. Willott, L. Albert, D. Arzoumanian, J. Bergeron, D. Crampton, P. Delorme, J. B. Hutchings, A. Omont, C. Reylé, and D. Schade, Astron. J. 140, 546 (2010), arXiv: 1006.1342.

    Article  ADS  Google Scholar 

  57. A. Marconi, G. Risaliti, R. Gilli, L. K. Hunt, R. Maiolino, and M. Salvati, Mon. Not. R. Astron. Soc. 351, 169 (2004), arXiv: astro-ph/0311619.

    Article  ADS  Google Scholar 

  58. M. Vika, S. P. Driver, A. W. Graham, and J. Liske, Mon. Not. R. Astron. Soc. 400, 1451 (2009), arXiv: 0908.2102.

    Article  ADS  Google Scholar 

  59. Y. R. Li, L. C. Ho, and J. M. Wang, Astrophys. J. 742, 33 (2011), arXiv: 1109.0089.

    Article  ADS  Google Scholar 

  60. F. Shankar, V. Allevato, M. Bernardi, C. Marsden, A. Lapi, N. Menci, P. J. Grylls, M. Krumpe, L. Zanisi, F. Ricci, F. La Franca, R. D. Baldi, J. Moreno, and R. K. Sheth, Nat. Astron. 4, 282 (2020), arXiv: 1910.10175.

    Article  ADS  Google Scholar 

  61. A. Sicilia, A. Lapi, L. Boco, F. Shankar, D. M. Alexander, V. Allevato, C. Villforth, M. Massardi, M. Spera, A. Bressan, and L. Danese, Astrophys. J. 934, 66 (2022), arXiv: 2206.07357.

    Article  ADS  Google Scholar 

  62. B. A. Reid, W. J. Percival, D. J. Eisenstein, L. Verde, D. N. Spergel, R. A. Skibba, N. A. Bahcall, T. Budavari, J. A. Frieman, M. Fukugita, J. R. Gott, J. E. Gunn, Ž. Ivezić, G. R. Knapp, R. G. Kron, R. H. Lupton, T. A. McKay, A. Meiksin, R. C. Nichol, A. C. Pope, D. J. Schlegel, D. P. Schneider, C. Stoughton, M. A. Strauss, A. S. Szalay, M. Tegmark, M. S. Vogeley, D. H. Weinberg, D. G. York, and I. Zehavi, Mon. Not. R. Astron. Soc. 404, 60 (2010), arXiv: 0907.1659.

    Article  ADS  Google Scholar 

  63. S. Chabanier, M. Millea, and N. Palanque-Delabrouille, Mon. Not. R. Astron. Soc. 489, 2247 (2019), arXiv: 1905.08103.

    Article  ADS  Google Scholar 

  64. N. Aghanim, et al. (Planck Collaboration), Astron. Astrophys. 641, A6 (2020), arXiv: 1807.06209.

    Article  Google Scholar 

  65. W. H. Kinney, Phys. Rev. D 72, 023515 (2005), arXiv: gr-qc/0503017.

    Article  ADS  Google Scholar 

  66. J. Martin, H. Motohashi, and T. Suyama, Phys. Rev. D 87, 023514 (2013), arXiv: 1211.0083.

    Article  ADS  Google Scholar 

  67. J. García-Bellido, and E. Ruiz Morales, Phys. Dark Universe 18, 47 (2017), arXiv: 1702.03901.

    Article  ADS  Google Scholar 

  68. Y. F. Cai, X. Tong, D. G. Wang, and S. F. Yan, Phys. Rev. Lett. 121, 081306 (2018), arXiv: 1805.03639.

    Article  ADS  Google Scholar 

  69. Y. F. Cai, C. Chen, X. Tong, D. G. Wang, and S. F. Yan, Phys. Rev. D 100, 043518 (2019), arXiv: 1902.08187.

    Article  ADS  Google Scholar 

  70. Z. Zhou, J. Jiang, Y. F. Cai, M. Sasaki, and S. Pi, Phys. Rev. D 102, 103527 (2020), arXiv: 2010.03537.

    Article  ADS  MathSciNet  Google Scholar 

  71. Y. F. Cai, J. Jiang, M. Sasaki, V. Vardanyan, and Z. Zhou, Phys. Rev. Lett. 127, 251301 (2021), arXiv: 2105.12554.

    Article  ADS  Google Scholar 

  72. J. Sureda, J. Magaña, I. J. Araya, and N. D. Padilla, Mon. Not. R. Astron. Soc. 507, 4804 (2021), arXiv: 2008.09683.

    Article  ADS  Google Scholar 

  73. Y. F. Cai, R. Brandenberger, and X. Zhang, J. Cosmol. Astropart. Phys. 2011(3), 003 (2011), arXiv: 1101.0822.

    Article  Google Scholar 

  74. P. Peter, E. J. C. Pinho, and N. Pinto-Neto, Phys. Rev. D 75, 023516 (2007), arXiv: hep-th/0610205.

    Article  ADS  Google Scholar 

  75. B. Carr, F. Kühnel, and M. Sandstad, Phys. Rev. D 94, 083504 (2016), arXiv: 1607.06077.

    Article  ADS  Google Scholar 

  76. A. M. Green, and B. J. Kavanagh, J. Phys. G-Nucl. Part. Phys. 48, 043001 (2021), arXiv: 2007.10722.

    Article  ADS  Google Scholar 

  77. A. Lapi, S. Raimundo, R. Aversa, Z. Y. Cai, M. Negrello, A. Celotti, G. De Zotti, and L. Danese, Astrophys. J. 782, 69 (2014), arXiv: 1312.3751.

    Article  ADS  Google Scholar 

  78. D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, Publ. Astron. Soc. Pac. 125, 306 (2013), arXiv: 1202.3665.

    Article  ADS  Google Scholar 

  79. V. De Luca, G. Franciolini, P. Pani, and A. Riotto, Phys. Rev. D 102, 043505 (2020), arXiv: 2003.12589.

    Article  ADS  Google Scholar 

  80. M. Ricotti, J. P. Ostriker, and K. J. Mack, Astrophys. J. 680, 829 (2008), arXiv: 0709.0524.

    Article  ADS  Google Scholar 

  81. D. J. Fixsen, E. S. Cheng, J. M. Gales, J. C. Mather, R. A. Shafer, and E. L. Wright, Astrophys. J. 473, 576 (1996), arXiv: astro-ph/9605054.

    Article  ADS  Google Scholar 

  82. A. Kogut, D. J. Fixsen, D. T. Chuss, J. Dotson, E. Dwek, M. Halpern, G. F. Hinshaw, S. M. Meyer, S. H. Moseley, M. D. Seiffert, D. N. Spergel, and E. J. Wollack, J. Cosmol. Astropart. Phys. 2011(7), 025 (2011), arXiv: 1105.2044.

    Article  Google Scholar 

  83. C. J. Moore, R. H. Cole, and C. P. L. Berry, Class. Quantum Grav. 32, 015014 (2015), arXiv: 1408.0740.

    Article  ADS  Google Scholar 

  84. P. E. Dewdney, P. J. Hall, R. T. Schilizzi, and T. J. L. W. Lazio, Proc. IEEE 97, 1482 (2009).

    Article  ADS  Google Scholar 

  85. R. L. Larson, S. L. Finkelstein, D. D. Kocevski, T. A. Hutchison, J. R. Trump, P. Arrabal Haro, V. Bromm, N. J. Cleri, M. Dickinson, S. Fujimoto, J. S. Kartaltepe, A. M. Koekemoer, C. Papovich, N. Pirzkal, S. Tacchella, J. A. Zavala, M. Bagley, P. Behroozi, J. B. Champagne, J. W. Cole, I. Jung, A. M. Morales, G. Yang, H. Zhang, A. Zitrin, R. O. Amorín, D. Burgarella, C. M. Casey, Ó. A. Chávez Ortiz, I. G. Cox, K. Chworowsky, A. Fontana, E. Gawiser, A. Grazian, N. A. Grogin, S. Harish, N. P. Hathi, M. Hirschmann, B. W. Holwerda, S. Juneau, G. C. K. Leung, R. A. Lucas, E. J. McGrath, P. G. Pérez-González, J. R. Rigby, L. M. Seillé, R. C. Simons, A. de la Vega, B. J. Weiner, S. M. Wilkins, and L. Y. A. Yung, Astrophys. J. Lett. 953, L29 (2023), arXiv: 2303.08918.

    Article  ADS  Google Scholar 

  86. B. Welch, D. Coe, E. Zackrisson, S. E. Mink, S. Ravindranath, J. Anderson, G. Brammer, L. Bradley, J. Yoon, P. Kelly, J. M. Diego, R. Windhorst, A. Zitrin, P. Dimauro, Y. Jiménez-Teja, Y. Abdurro’uf, M. Nonino, A. Acebron, F. Andrade-Santos, R. J. Avila, M. B. Bayliss, A. Benítez, T. Broadhurst, R. Bhatawdekar, M. Bradač, G. B. Caminha, W. Chen, J. Eldridge, E. Farag, M. Florian, B. Frye, S. Fujimoto, S. Gomez, A. Henry, T. Y. Y. Hsiao, T. A. Hutchison, B. L. James, M. Joyce, I. Jung, G. Khullar, R. L. Larson, G. Mahler, N. Mandelker, S. McCandliss, T. Morishita, R. Newshore, C. Norman, K. O’Connor, P. A. Oesch, M. Oguri, M. Ouchi, M. Postman, J. R. Rigby, R. E. RyanJr, S. Sharma, K. Sharon, V. Strait, L. G. Strolger, F. X. Timmes, S. Toft, M. Trenti, E. Vanzella, and A. Vikaeus, Astrophys. J. Lett. 940, L1 (2022), arXiv: 2208.09007.

    Article  ADS  Google Scholar 

  87. J. Yang, F. Wang, X. Fan, A. J. Barth, J. F. Hennawi, R. Nanni, F. Bian, F. B. Davies, E. P. Farina, J. T. Schindler, E. Bañados, R. Decarli, A. C. Eilers, R. Green, H. Guo, L. Jiang, J. T. Li, B. Venemans, F. Walter, X. B. Wu, and M. Yue, Astrophys. J. 923, 262 (2021), arXiv: 2109.13942.

    Article  ADS  Google Scholar 

  88. Y. F. Cai, X. H. Ma, M. Sasaki, D. G. Wang, and Z. Zhou, Phys. Lett. B 834, 137461 (2022), arXiv: 2112.13836.

    Article  Google Scholar 

  89. Y. F. Cai, X. H. Ma, M. Sasaki, D. G. Wang, and Z. Zhou, J. Cosmol. Astropart. Phys. 2022(12), 034 (2022), arXiv: 2207.11910.

    Article  ADS  Google Scholar 

  90. G. Panagopoulos, and E. Silverstein, arXiv: 1906.02827.

  91. J. M. Ezquiaga, J. García-Bellido, and V. Vennin, J. Cosmol. Astropart. Phys. 2020(3), 029 (2020), arXiv: 1912.05399.

    Article  ADS  Google Scholar 

  92. D. G. Figueroa, S. Raatikainen, S. Räsänen, and E. Tomberg, Phys. Rev. Lett. 127, 101302 (2021), arXiv: 2012.06551.

    Article  ADS  Google Scholar 

  93. G. Ferrante, G. Franciolini, A. J. Iovino, and A. Urbano, Phys. Rev. D 107, 043520 (2023), arXiv: 2211.01728.

    Article  ADS  Google Scholar 

  94. S. Pi, and M. Sasaki, Phys. Rev. Lett. 131, 011002 (2023), arXiv: 2211.13932.

    Article  ADS  Google Scholar 

  95. T. Nakama, B. Carr, and J. Silk, Phys. Rev. D 97, 043525 (2018), arXiv: 1710.06945.

    Article  ADS  Google Scholar 

  96. X. Fan, V. K. Narayanan, R. H. Lupton, M. A. Strauss, G. R. Knapp, R. H. Becker, R. L. White, L. Pentericci, S. K. Leggett, Z. Haiman, J. E. Gunn, Ž. Ivezić, D. P. Schneider, S. F. Anderson, J. Brinkmann, N. A. Bahcall, A. J. Connolly, I. Csabai, M. Doi, M. Fukugita, T. Geballe, E. K. Grebel, D. Harbeck, G. Hennessy, D. Q. Lamb, G. Miknaitis, J. A. Munn, R. Nichol, S. Okamura, J. R. Pier, F. Prada, G. T. Richards, A. Szalay, and D. G. York, Astron. J. 122, 2833 (2001), arXiv: astro-ph/0108063.

    Article  ADS  Google Scholar 

  97. F. Wang, X. Fan, J. Yang, C. Mazzucchelli, X. B. Wu, J. T. Li, E. Bañados, E. P. Farina, R. Nanni, Y. Ai, F. Bian, F. B. Davies, R. Decarli, J. F. Hennawi, J. T. Schindler, B. Venemans, and F. Walter, Astrophys. J. 908, 53 (2021), arXiv: 2011.12458.

    Article  ADS  Google Scholar 

  98. J. Yang, F. Wang, X. Fan, J. F. Hennawi, F. B. Davies, M. Yue, E. Banados, X. B. Wu, B. Venemans, A. J. Barth, F. Bian, K. Boutsia, R. Decarli, E. P. Farina, R. Green, L. Jiang, J. T. Li, C. Mazzucchelli, and F. Walter, Astrophys. J. Lett. 897, L14 (2020), arXiv: 2006.13452.

    Article  ADS  Google Scholar 

  99. D. Wylezalek, A. Vayner, D. S. N. Rupke, N. L. Zakamska, S. Veilleux, Y. Ishikawa, C. Bertemes, W. Liu, J. K. Barrera-Ballesteros, H. W. Chen, A. D. Goulding, J. E. Greene, K. N. Hainline, F. Hamann, T. Heckman, S. D. Johnson, D. Lutz, N. Lützgendorf, V. Mainieri, R. Maiolino, N. P. H. Nesvadba, P. Ogle, and E. Sturm, Astrophys. J. Lett. 940, L7 (2022), arXiv: 2210.10074.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Fu Cai, Bo Wang, Damien A. Easson or Antonino Marcianò.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

We are grateful to Bernard Carr, Yun Fang, Ricardo Z. Ferreira, Amara Ilyas, Ugo Moschella, Jerome Quintin, Misao Sasaki, Dong-Gang Wang, Yi Wang, Zihan Zhou, and Mian Zhu for valuable communications. This work was supported in part by the National Key R&D Program of China (Grant No. 2021YFC2203100), CAS Young Interdisciplinary Innovation Team (Grant No. JCTD-2022-20), National Natural Science Foundation of China (Grant Nos. 11875113, 11961131007, 12261131497, 12003029, 11833005, and 12192224), 111 Project for “Observational and Theoretical Research on Dark Matter and Dark Energy” (Grant No. B23042), Fundamental Research Funds for Central Universities, CSC Innovation Talent Funds, USTC Fellowship for International Cooperation, USTC Research Funds of the Double First-Class Initiative, CAS project for young scientists in basic research (Grant No. YSBR-006), Shanghai Municipality Science and Technology Commission (Grant No. KBH1512299). Sheng-Feng Yan is supported by the Disposizione del Presidente INFN n. 24433 in INFN Sezione di Milano. Damien A. Easson is supported in part by the U.S. Department of Energy, Office of High Energy Physics (Grant No. DE-SC0019470), and the Foundational Questions Institute (Grant No. FQXi-MGB-1927). We acknowledge the use of the computing cluster LINDA & JUDY in the particle cosmology group at USTC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, YF., Tang, C., Mo, G. et al. Primordial black hole mass functions as a probe of cosmic origin. Sci. China Phys. Mech. Astron. 67, 259512 (2024). https://doi.org/10.1007/s11433-023-2314-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2314-1

Navigation