Skip to main content
Log in

Tailored energy absorption for a novel auxetic honeycomb structure under large deformation

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In comparison to conventional hexagonal honeycomb structures, auxetic metamaterials with re-entrant configurations have exhibited superior mechanical properties in terms of energy absorption. To further enhance the energy absorption capacity of these materials, a novel re-entrant honeycomb configuration, named novel auxetic re-entrant honeycomb (NARH), is developed by incorporating “<>”-shaped cell walls into the conventional auxetic re-entrant honeycomb (ARH). Two analytical models for the plateau stress are formulated to consider the plastic deformation of NARH during quasi-static compression and the dynamic impact using the linear momentum theorem. Quasi-static compression tests on 3D printed NARH honeycomb specimens and finite element simulations are performed to verify the effectiveness of the theoretical models. NARH exhibits higher plateau stresses compared with ARH during compression, which can be attributed to the presence of more plastic hinges formed in NARH. These hinges, the embedded parts with inclined cell walls, not only improve stability by forming stable triangles during compression but also enhance the energy absorption capacity. A parametric study is conducted to analyze the effect of impact velocity, thickness, and incline angle of cell walls on crashworthiness. Numerical simulations demonstrate higher sensitivity of the mechanical properties to impact velocity and cell wall thickness. Adding ribs to the “<>”-shaped cell walls in NARH further reduces the initial peak force during dynamic crushing while maintaining high energy absorption. The research provides valuable guidelines for the design of energy absorption metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. K. E. Evans, M. A. Nkansah, I. J. Hutchinson, and S. C. Rogers, Nature 353, 124 (1991).

    Article  ADS  Google Scholar 

  2. X. Ren, R. Das, P. Tran, T. D. Ngo, and Y. M. Xie, Smart Mater. Struct. 27, 023001 (2018).

    Article  Google Scholar 

  3. H. Wan, H. Ohtaki, S. Kotosaka, and G. Hu, Eur. J. Mech.-A Solids 23, 95 (2004).

    Article  Google Scholar 

  4. C. Qi, A. Remennikov, L. Z. Pei, S. Yang, Z. H. Yu, and T. D. Ngo, Composite Struct. 180, 161 (2017).

    Article  Google Scholar 

  5. L. L. Hu, M. Z. Zhou, and H. Deng, Thin-Walled Struct. 131, 373 (2018).

    Article  Google Scholar 

  6. G. Imbalzano, S. Linforth, T. D. Ngo, P. V. S. Lee, and P. Tran, Composite Struct. 183, 242 (2018).

    Article  Google Scholar 

  7. X. Jin, T. Jin, B. Su, Z. Wang, J. Ning, and X. Shu, J. Sandw. Struct. Mater. 19, 544 (2017).

    Article  Google Scholar 

  8. Q. L. Zeng, W. W. Wu, W. X. Hu, L. Xi, R. Tao, and D. N. Fang, Sci. China-Phys. Mech. Astron. 63, 104611 (2020).

    Article  ADS  Google Scholar 

  9. C. Li, J. Qi, P. Wang, Z. Zhao, Z. Wang, H. Lei, and S. Duan, Sci. China-Phys. Mech. Astron. 65, 294611 (2022).

    Article  ADS  Google Scholar 

  10. C. Qi, F. Jiang, C. Yu, and S. Yang, Int. J. Impact Eng. 130, 247 (2019).

    Article  ADS  Google Scholar 

  11. X. Zhao, Q. Gao, L. Wang, Q. Yu, and Z. D. Ma, Mater. Des. 160, 527 (2018).

    Article  Google Scholar 

  12. H. Wang, Z. Lu, Z. Yang, and X. Li, Composite Struct. 208, 758 (2019).

    Article  Google Scholar 

  13. A. Ingrole, A. Hao, and R. Liang, Mater. Des. 117, 72 (2017).

    Article  Google Scholar 

  14. H. C. Luo, X. Ren, Y. Zhang, X. Y. Zhang, X. G. Zhang, C. Luo, X. Cheng, and Y. M. Xie, Composite Struct. 280, 114922 (2022).

    Article  Google Scholar 

  15. H. Jiang, Y. Ren, Q. Jin, G. Zhu, Y. Hu, and F. Cheng, Thin-Walled Struct. 154, 106911 (2020).

    Article  Google Scholar 

  16. C. Qi, F. Jiang, S. Yang, A. Remennikov, S. Chen, and C. Ding, Aerospace Sci. Tech. 124, 107548 (2022).

    Article  Google Scholar 

  17. H. Wang, Z. Lu, Z. Yang, and X. Li, Int. J. Mech. Sci. 151, 746 (2019).

    Article  Google Scholar 

  18. L. Li, F. Yang, S. Zhang, Z. Guo, L. Wang, X. Ren, and M. Zhao, Eng. Struct. 289, 116335 (2023).

    Article  Google Scholar 

  19. H. L. Tan, Z. C. He, K. X. Li, E. Li, A. G. Cheng, and B. Xu, Composite Struct. 229, 111415 (2019).

    Article  Google Scholar 

  20. X. Xu, Y. Zhang, J. Wang, F. Jiang, and C. H. Wang, Composite Struct. 194, 36 (2018).

    Article  Google Scholar 

  21. Z. X. Lu, X. Li, Z. Y. Yang, and F. Xie, Composite Struct. 138, 243 (2016).

    Article  Google Scholar 

  22. M. H. Fu, Y. Chen, and L. L. Hu, Composite Struct. 160, 574 (2017).

    Article  Google Scholar 

  23. T. Baran, and M. Öztürk, Eur. J. Mech.-A Solids 83, 104037 (2020).

    Article  MathSciNet  Google Scholar 

  24. X. Li, Q. Wang, Z. Yang, and Z. Lu, Extreme Mech. Lett. 27, 59 (2019).

    Article  Google Scholar 

  25. D. Li, R. Gao, L. Dong, W. K. Lam, and F. Zhang, Smart Mater. Struct. 29, 045015 (2020).

    Article  ADS  Google Scholar 

  26. X. Y. Zhang, X. Ren, Y. Zhang, and Y. M. Xie, Thin-Walled Struct. 174, 109162 (2022).

    Article  Google Scholar 

  27. X. Y. Zhang, X. Ren, X. Y. Wang, Y. Zhang, and Y. M. Xie, Compos. Part B-Eng. 226, 109303 (2021).

    Article  Google Scholar 

  28. L. J. Gibson, and M. F. Ashy, Cellular Solids: Structure and Properties (Pergamon Press, Oxford, 1988), pp. 70–82.

    Google Scholar 

  29. Z. Dong, Y. Li, T. Zhao, W. Wu, D. Xiao, and J. Liang, Mater. Des. 182, 108036 (2019).

    Article  Google Scholar 

  30. E. Cetin, and C. Baykasoglu, Int. J. Mech. Sci. 157–158, 471 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuhui Hou.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11972287, and 12072266) and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, X., Wang, B. & Deng, Z. Tailored energy absorption for a novel auxetic honeycomb structure under large deformation. Sci. China Phys. Mech. Astron. 67, 254611 (2024). https://doi.org/10.1007/s11433-023-2311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2311-3

Navigation