Abstract
In comparison to conventional hexagonal honeycomb structures, auxetic metamaterials with re-entrant configurations have exhibited superior mechanical properties in terms of energy absorption. To further enhance the energy absorption capacity of these materials, a novel re-entrant honeycomb configuration, named novel auxetic re-entrant honeycomb (NARH), is developed by incorporating “<>”-shaped cell walls into the conventional auxetic re-entrant honeycomb (ARH). Two analytical models for the plateau stress are formulated to consider the plastic deformation of NARH during quasi-static compression and the dynamic impact using the linear momentum theorem. Quasi-static compression tests on 3D printed NARH honeycomb specimens and finite element simulations are performed to verify the effectiveness of the theoretical models. NARH exhibits higher plateau stresses compared with ARH during compression, which can be attributed to the presence of more plastic hinges formed in NARH. These hinges, the embedded parts with inclined cell walls, not only improve stability by forming stable triangles during compression but also enhance the energy absorption capacity. A parametric study is conducted to analyze the effect of impact velocity, thickness, and incline angle of cell walls on crashworthiness. Numerical simulations demonstrate higher sensitivity of the mechanical properties to impact velocity and cell wall thickness. Adding ribs to the “<>”-shaped cell walls in NARH further reduces the initial peak force during dynamic crushing while maintaining high energy absorption. The research provides valuable guidelines for the design of energy absorption metamaterials.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
K. E. Evans, M. A. Nkansah, I. J. Hutchinson, and S. C. Rogers, Nature 353, 124 (1991).
X. Ren, R. Das, P. Tran, T. D. Ngo, and Y. M. Xie, Smart Mater. Struct. 27, 023001 (2018).
H. Wan, H. Ohtaki, S. Kotosaka, and G. Hu, Eur. J. Mech.-A Solids 23, 95 (2004).
C. Qi, A. Remennikov, L. Z. Pei, S. Yang, Z. H. Yu, and T. D. Ngo, Composite Struct. 180, 161 (2017).
L. L. Hu, M. Z. Zhou, and H. Deng, Thin-Walled Struct. 131, 373 (2018).
G. Imbalzano, S. Linforth, T. D. Ngo, P. V. S. Lee, and P. Tran, Composite Struct. 183, 242 (2018).
X. Jin, T. Jin, B. Su, Z. Wang, J. Ning, and X. Shu, J. Sandw. Struct. Mater. 19, 544 (2017).
Q. L. Zeng, W. W. Wu, W. X. Hu, L. Xi, R. Tao, and D. N. Fang, Sci. China-Phys. Mech. Astron. 63, 104611 (2020).
C. Li, J. Qi, P. Wang, Z. Zhao, Z. Wang, H. Lei, and S. Duan, Sci. China-Phys. Mech. Astron. 65, 294611 (2022).
C. Qi, F. Jiang, C. Yu, and S. Yang, Int. J. Impact Eng. 130, 247 (2019).
X. Zhao, Q. Gao, L. Wang, Q. Yu, and Z. D. Ma, Mater. Des. 160, 527 (2018).
H. Wang, Z. Lu, Z. Yang, and X. Li, Composite Struct. 208, 758 (2019).
A. Ingrole, A. Hao, and R. Liang, Mater. Des. 117, 72 (2017).
H. C. Luo, X. Ren, Y. Zhang, X. Y. Zhang, X. G. Zhang, C. Luo, X. Cheng, and Y. M. Xie, Composite Struct. 280, 114922 (2022).
H. Jiang, Y. Ren, Q. Jin, G. Zhu, Y. Hu, and F. Cheng, Thin-Walled Struct. 154, 106911 (2020).
C. Qi, F. Jiang, S. Yang, A. Remennikov, S. Chen, and C. Ding, Aerospace Sci. Tech. 124, 107548 (2022).
H. Wang, Z. Lu, Z. Yang, and X. Li, Int. J. Mech. Sci. 151, 746 (2019).
L. Li, F. Yang, S. Zhang, Z. Guo, L. Wang, X. Ren, and M. Zhao, Eng. Struct. 289, 116335 (2023).
H. L. Tan, Z. C. He, K. X. Li, E. Li, A. G. Cheng, and B. Xu, Composite Struct. 229, 111415 (2019).
X. Xu, Y. Zhang, J. Wang, F. Jiang, and C. H. Wang, Composite Struct. 194, 36 (2018).
Z. X. Lu, X. Li, Z. Y. Yang, and F. Xie, Composite Struct. 138, 243 (2016).
M. H. Fu, Y. Chen, and L. L. Hu, Composite Struct. 160, 574 (2017).
T. Baran, and M. Öztürk, Eur. J. Mech.-A Solids 83, 104037 (2020).
X. Li, Q. Wang, Z. Yang, and Z. Lu, Extreme Mech. Lett. 27, 59 (2019).
D. Li, R. Gao, L. Dong, W. K. Lam, and F. Zhang, Smart Mater. Struct. 29, 045015 (2020).
X. Y. Zhang, X. Ren, Y. Zhang, and Y. M. Xie, Thin-Walled Struct. 174, 109162 (2022).
X. Y. Zhang, X. Ren, X. Y. Wang, Y. Zhang, and Y. M. Xie, Compos. Part B-Eng. 226, 109303 (2021).
L. J. Gibson, and M. F. Ashy, Cellular Solids: Structure and Properties (Pergamon Press, Oxford, 1988), pp. 70–82.
Z. Dong, Y. Li, T. Zhao, W. Wu, D. Xiao, and J. Liang, Mater. Des. 182, 108036 (2019).
E. Cetin, and C. Baykasoglu, Int. J. Mech. Sci. 157–158, 471 (2019).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest The authors declare that they have no conflict of interest.
Additional information
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11972287, and 12072266) and the Fundamental Research Funds for the Central Universities.
Rights and permissions
About this article
Cite this article
Hou, X., Wang, B. & Deng, Z. Tailored energy absorption for a novel auxetic honeycomb structure under large deformation. Sci. China Phys. Mech. Astron. 67, 254611 (2024). https://doi.org/10.1007/s11433-023-2311-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11433-023-2311-3