Skip to main content
Log in

Superexchange and charge transfer in the nickelate superconductor La3Ni2O7 under pressure

  • Article
  • Special Topic: Novel Electronic Phases in Low-dimensional Systems
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Recently, a bulk nickelate superconductor La3Ni2O7 is discovered at pressures with a remarkable high transition temperature Tc ∼ 80 K. Here, we study a Hubbard model with tight-binding parameters derived from ab initio calculations of La3Ni2O7, by employing large scale determinant quantum Monte Carlo and cellular dynamical mean-field theory. Our result suggests that the superexchange couplings in this system are comparable to that of cuprates. The system is a charge transfer insulator as the hole concentration becomes four per site at large Hubbard U. Upon hole doping, two low-energy spin-singlet bands emerge in the system exhibiting distinct correlation properties: while the one composed of the out-of-plane \(\text{Ni-}d_{3z^{2}-r^{2}}\) and O-pz orbitals demonstrates strong antiferromagnetic correlations and narrow effective bandwidth, the in-plane singlet band consisting of the \(\text{Ni-}d_{x^{2}-y^{2}}\) and O-px/py orbitals is in general more itinerant. Over a broad range of hole doping, the doped holes occupy primarily the \(d_{x^{2}-y^{2}}\) and px/py orbitals, whereas the \(d_{3z^{2}-r^{2}}\) and pz orbitals retain underdoped. We propose an effective t-J model to capture the relevant physics and discuss the implications of our result for comprehending the La3Ni2O7 superconductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. G. Bednorz, and K. A. Müller, Z. Physik B-Condensed Matter 64, 189 (1986).

    Article  ADS  Google Scholar 

  2. H. Sun, M. Huo, X. Hu, J. Li, Z. Liu, Y. Han, L. Tang, Z. Mao, P. Yang, B. Wang, J. Cheng, D. X. Yao, G. M. Zhang, and M. Wang, Nature 621, 493 (2023), arXiv: 2305.09586.

    Article  ADS  Google Scholar 

  3. Z. Luo, X. Hu, M. Wang, W. Wú, and D. X. Yao, Phys. Rev. Lett. 131, 126001 (2023), arXiv: 2305.15564.

    Article  ADS  Google Scholar 

  4. F. C. Zhang, and T. M. Rice, Phys. Rev. B 37, 3759 (1988).

    Article  ADS  Google Scholar 

  5. G. Kotliar, Phys. Rev. B 37, 3664 (1988).

    Article  ADS  Google Scholar 

  6. V. J. Emery, and S. A. Kivelson, Nature 374, 434 (1995).

    Article  ADS  Google Scholar 

  7. D. J. Scalapino, in Handbook of High-Temperature Superconductivity: Theory and Experiment, edited by J. R. Schrieffer, and J. S. Brooks (Springer, New York, 2007), pp. 495–526.

    Chapter  Google Scholar 

  8. B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, Nature 518, 179 (2015).

    Article  ADS  Google Scholar 

  9. Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichtenberg, Nature 372, 532 (1994).

    Article  ADS  Google Scholar 

  10. Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and H. Hosono, J. Am. Chem. Soc. 128, 10012 (2006).

    Article  Google Scholar 

  11. Y. Maeno, T. M. Rice, and M. Sigrist, Physics Today 54, 42 (2001).

    Article  ADS  Google Scholar 

  12. X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Nature 453, 761 (2008), arXiv: 0803.3603.

    Article  ADS  Google Scholar 

  13. A. V. Chubukov, D. V. Efremov, and I. Eremin, Phys. Rev. B 78, 134512 (2008), arXiv: 0807.3735.

    Article  ADS  Google Scholar 

  14. J. Hu, C. Le, and X. Wu, Phys. Rev. X 5, 041012 (2015), arXiv: 1506.03904.

    Google Scholar 

  15. M. Kitatani, L. Si, P. Worm, J. M. Tomczak, R. Arita, and K. Held, Phys. Rev. Lett. 130, 166002 (2023), arXiv: 2207.14038.

    Article  ADS  Google Scholar 

  16. S. Jiang, D. J. Scalapino, and S. R. White, Proc. Natl. Acad. Sci. USA 118, e2109978118 (2021), arXiv: 2104.10149.

    Article  Google Scholar 

  17. M. Christos, Z. X. Luo, H. Shackleton, Y. H. Zhang, M. S. Scheurer, and S. Sachdev, Proc. Natl. Acad. Sci. USA 120, e2302701120 (2023), arXiv: 2302.07885.

    Article  Google Scholar 

  18. D. Li, K. Lee, B. Y. Wang, M. Osada, S. Crossley, H. R. Lee, Y. Cui, Y. Hikita, and H. Y. Hwang, Nature 572, 624 (2019).

    Article  ADS  Google Scholar 

  19. K. W. Lee, and W. E. Pickett, Phys. Rev. B 70, 165109 (2004), arXiv: cond-mat/0405570.

    Article  ADS  Google Scholar 

  20. S. Middey, J. Chakhalian, P. Mahadevan, J. W. Freeland, A. J. Millis, and D. D. Sarma, Annu. Rev. Mater. Res. 46, 305 (2016), arXiv: 1606.09291.

    Article  ADS  Google Scholar 

  21. K. Haule, and G. L. Pascut, Sci. Rep. 7, 10375 (2017), arXiv: 1703.08196.

    Article  ADS  Google Scholar 

  22. O. E. Peil, A. Hampel, C. Ederer, and A. Georges, Phys. Rev. B 99, 245127 (2019), arXiv: 1809.03720.

    Article  ADS  Google Scholar 

  23. M. Jiang, M. Berciu, and G. A. Sawatzky, Phys. Rev. Lett. 124, 207004 (2020), arXiv: 1909.02557.

    Article  ADS  Google Scholar 

  24. A. S. Botana, and M. R. Norman, Phys. Rev. X 10, 011024 (2020), arXiv: 1908.10946.

    Google Scholar 

  25. G. M. Zhang, Y. Yang, and F. C. Zhang, Phys. Rev. B 101, 020501 (2020), arXiv: 1909.11845.

    Article  ADS  Google Scholar 

  26. P. Werner, and S. Hoshino, Phys. Rev. B 101, 041104 (2020), arXiv: 1910.00473.

    Article  ADS  Google Scholar 

  27. Y. Wang, C. J. Kang, H. Miao, and G. Kotliar, Phys. Rev. B 102, 161118 (2020).

    Article  ADS  Google Scholar 

  28. F. Lechermann, Phys. Rev. X 10, 041002 (2020), arXiv: 2005.01166.

    Google Scholar 

  29. P. Worm, L. Si, M. Kitatani, R. Arita, J. M. Tomczak, and K. Held, Phys. Rev. Mater. 6, L091801 (2022).

    Article  ADS  Google Scholar 

  30. Q. Gu, Y. Li, S. Wan, H. Li, W. Guo, H. Yang, Q. Li, X. Zhu, X. Pan, Y. Nie, and H. H. Wen, Nat. Commun. 11, 6027 (2020).

    Article  ADS  Google Scholar 

  31. H. Chen, A. Hampel, J. Karp, F. Lechermann, and A. J. Millis, Front. Phys. 10, 835942 (2022), arXiv: 2201.02852.

    Article  Google Scholar 

  32. X. Ding, C. C. Tam, X. Sui, Y. Zhao, M. Xu, J. Choi, H. Leng, J. Zhang, M. Wu, H. Xiao, X. Zu, M. Garcia-Fernandez, S. Agrestini, X. Wu, Q. Wang, P. Gao, S. Li, B. Huang, K. J. Zhou, and L. Qiao, Nature 615, 50 (2023).

    Article  ADS  Google Scholar 

  33. V. Pardo, and W. E. Pickett, Phys. Rev. B 83, 245128 (2011), arXiv: 1103.2407.

    Article  ADS  Google Scholar 

  34. Z. Liu, H. Sun, M. Huo, X. Ma, Y. Ji, E. Yi, L. Li, H. Liu, J. Yu, Z. Zhang, Z. Chen, F. Liang, H. Dong, H. Guo, D. Zhong, B. Shen, S. Li, and M. Wang, Sci. China-Phys. Mech. Astron. 66, 217411 (2023), arXiv: 2205.00950.

    Article  ADS  Google Scholar 

  35. M. Gao, Z. Lu, and T. Xiang, Physics 44, 421 (2015).

    Google Scholar 

  36. H. Lu, M. Rossi, A. Nag, M. Osada, D. F. Li, K. Lee, B. Y. Wang, M. Garcia-Fernandez, S. Agrestini, Z. X. Shen, E. M. Been, B. Moritz, T. P. Devereaux, J. Zaanen, H. Y. Hwang, K. J. Zhou, and W. S. Lee, Science 373, 213 (2021), arXiv: 2105.11300.

    Article  ADS  Google Scholar 

  37. Z. Liu, M. Huo, J. Li, Q. Li, Y. Liu, Y. Dai, X. Zhou, J. Hao, Y. Lu, M. Wang, and H.-H. Wen, arXiv: 2307.02950.

  38. R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D 24, 2278 (1981).

    Article  ADS  Google Scholar 

  39. F. Assaad, and H. Evertz, in World-line and determinantal quantum monte carlo methods for spins, phonons and electrons: Computational Many-Particle Physics (Springer, New York, 2008), pp. 277–356.

    Google Scholar 

  40. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  ADS  Google Scholar 

  41. T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev. Mod. Phys. 77, 1027 (2005), arXiv: cond-mat/0404055.

    Article  ADS  Google Scholar 

  42. C. Weber, C. Yee, K. Haule, and G. Kotliar, Europhys. Lett. 100, 37001 (2012), arXiv: 1108.3028.

    Article  ADS  Google Scholar 

  43. J. Karp, A. S. Botana, M. R. Norman, H. Park, M. Zingl, and A. Millis, Phys. Rev. X 10, 021061 (2020), arXiv: 2001.06441.

    Google Scholar 

  44. J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).

    Article  ADS  Google Scholar 

  45. N. Kowalski, S. S. Dash, P. Sémon, D. Sénéchal, and A. M. Tremblay, Proc. Natl. Acad. Sci. USA 118, e2106476118 (2021), arXiv: 2104.07087.

    Article  Google Scholar 

  46. S. M. O’Mahony, W. Ren, W. Chen, Y. X. Chong, X. Liu, H. Eisaki, S. Uchida, M. H. Hamidian, and J. C. S. Davis, Proc. Natl. Acad. Sci. USA 119, e2207449119 (2022), arXiv: 2108.03655.

    Article  Google Scholar 

  47. Q. Qin, and Y. Yang, Phys. Rev. B 108, L140504 (2023), arXiv: 2308.09044.

    Article  ADS  Google Scholar 

  48. K. Held, G. Keller, V. Eyert, D. Vollhardt, and V. I. Anisimov, Phys. Rev. Lett. 86, 5345 (2001), arXiv: cond-mat/0011518.

    Article  ADS  Google Scholar 

  49. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).

    Article  ADS  Google Scholar 

  50. M. Karolak, G. Ulm, T. Wehling, V. Mazurenko, A. Poteryaev, and A. Lichtenstein, J. Electron Spectr. Relat. Phenomena 181, 11 (2010).

    Article  Google Scholar 

  51. X. Wang, M. J. Han, L. de’Medici, H. Park, C. A. Marianetti, and A. J. Millis, Phys. Rev. B 86, 195136 (2012), arXiv: 1110.2782.

    Article  ADS  Google Scholar 

  52. K. Held, Adv. Phys. 56, 829 (2007).

    Article  ADS  Google Scholar 

  53. Y. F. Kung, C. C. Chen, Y. Wang, E. W. Huang, E. A. Nowadnick, B. Moritz, R. T. Scalettar, S. Johnston, and T. P. Devereaux, Phys. Rev. B 93, 155166 (2016), arXiv: 1601.05421.

    Article  ADS  Google Scholar 

  54. P. Mai, G. Balduzzi, S. Johnston, and T. A. Maier, Phys. Rev. B 103, 144514 (2021), arXiv: 2101.10965.

    Article  ADS  Google Scholar 

  55. W. Ruan, C. Hu, J. Zhao, P. Cai, Y. Peng, C. Ye, R. Yu, X. Li, Z. Hao, C. Jin, X. Zhou, Z. Y. Weng, and Y. Wang, Sci. Bull. 61, 1826 (2016).

    Article  Google Scholar 

  56. D. Bergeron, and A. M. S. Tremblay, Phys. Rev. E 94, 023303 (2016), arXiv: 1507.01012.

    Article  ADS  MathSciNet  Google Scholar 

  57. J. Yang, H. Sun, X. Hu, Y. Xie, T. Miao, H. Luo, H. Chen, B. Liang, W. Zhu, G. Qu, C.-Q. Chen, M. Huo, Y. Huang, S. Zhang, F. Zhang, F. Yang, Z. Wang, Q. Peng, H. Mao, G. Liu, Z. Xu, T. Qian, D.-X. Yao, M. Wang, L. Zhao, and X. J. Zhou, arXiv: 2309.01148.

  58. W. Wu, X. Wang, and A. M. Tremblay, Proc. Natl. Acad. Sci. USA 119, e2115819119 (2022), arXiv: 2109.02635.

    Article  Google Scholar 

  59. S. Wakimoto, K. Yamada, J. M. Tranquada, C. D. Frost, R. J. Birgeneau, and H. Zhang, Phys. Rev. Lett. 98, 247003 (2007), arXiv: cond-mat/0609155.

    Article  ADS  Google Scholar 

  60. L. Wang, G. He, Z. Yang, M. Garcia-Fernandez, A. Nag, K. Zhou, M. Minola, M. L. Tacon, B. Keimer, Y. Peng, and Y. Li, Nat. Commun. 13, 3163 (2022).

    Article  ADS  Google Scholar 

  61. L. de’Medici, J. Mravlje, and A. Georges, Phys. Rev. Lett. 107, 256401 (2011), arXiv: 1106.0815.

    Article  ADS  Google Scholar 

  62. Q. G. Yang, D. Wang, and Q. H. Wang, Phys. Rev. B 108, L140505 (2023), arXiv: 2306.03706.

    Article  ADS  Google Scholar 

  63. Y. Shen, M. Qin, and G. M. Zhang, Chin. Phys. Lett. 40, 127401 (2023), arXiv: 2306.07837.

    Article  ADS  Google Scholar 

  64. Y. Gu, C. Le, Z. Yang, X. Wu, and J. Hu, arXiv: 2306.07275.

  65. H. Sakakibara, N. Kitamine, M. Ochi, and K. Kuroki, arXiv: 2306.06039.

  66. Y. Yang, G. M. Zhang, and F. C. Zhang, Phys. Rev. B 108, L201108 (2023).

    Article  ADS  Google Scholar 

  67. Z. Luo, B. Lv, M. Wang, W. Wú, and D.-X. Yao, arXiv: 2308.16564.

  68. Y. Zhang, L. F. Lin, A. Moreo, and E. Dagotto, Phys. Rev. B 108, L180510 (2023), arXiv: 2306.03231.

    Article  ADS  Google Scholar 

  69. F. Lechermann, J. Gondolf, S. Bötzel, and I. M. Eremin, Phys. Rev. B 108, L201121 (2023).

    Article  ADS  Google Scholar 

  70. V. Christiansson, F. Petocchi, and P. Werner, Phys. Rev. Lett. 131, 206501 (2023), arXiv: 2306.07931.

    Article  ADS  Google Scholar 

  71. D. A. Shilenko, and I. V. Leonov, Phys. Rev. B 108, 125105 (2023), arXiv: 2306.14841.

    Article  ADS  Google Scholar 

  72. D. Rybicki, M. Jurkutat, S. Reichardt, C. Kapusta, and J. Haase, Nat. Commun. 7, 11413 (2016), arXiv: 1511.02408.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wéi Wú.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

We thank Hualei Sun, Mi Jiang, K. Le Hur, Yi Lu, and Xunwu Hu for useful discussions. Wéi Wú is indebted to A.-M. Tremblay for useful discussions and insightful suggestions. Wéi Wú acknowledges help from Dong Meng in preparing the illustrations in Figure 1. Work at Sun Yat-sen University was supported by the National Natural Science Foundation of China (Grant Nos. 12274472, 92165204, 12174454, and 11974432), the National Key Research and Development Program of China (Grant Nos. 2022YFA1402802, and 2018YFA0306001), the Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2022A1515011618, and 2021B1515120015), the Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices (Grant No. 2022B1212010008), the Shenzhen International Quantum Academy (Grant No. SIQA202102), and the Leading Talent Program of Guangdong Special Projects (Grant No. 201626003). We acknowledge the support from GuangZhou National Supercomputing Center (Tianhe-II).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wú, W., Luo, Z., Yao, DX. et al. Superexchange and charge transfer in the nickelate superconductor La3Ni2O7 under pressure. Sci. China Phys. Mech. Astron. 67, 117402 (2024). https://doi.org/10.1007/s11433-023-2300-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2300-4

Navigation