Skip to main content
Log in

Demonstration of controlled high-dimensional quantum teleportation

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Controlled quantum teleportation (CQT), which is regarded as the prelude and backbone for a genuine quantum internet, reveals the cooperation, supervision, and control relationship among the sender, receiver, and controller in the quantum network within the simplest unit. Compared with low-dimensional counterparts, high-dimensional CQT can exhibit larger information transmission capacity and higher superiority of the controller’s authority. In this article, we report a proof-of-principle experimental realization of three-dimensional (3D) CQT with a fidelity of 97.4% ± 0.2%. To reduce the complexity of the circuit, we simulate a standard 4-qutrit CQT protocol in a 9×9-dimensional two-photon system with high-quality operations. The corresponding control powers are 48.1% ± 0.2% for teleporting a qutrit and 52.8% ± 0.3% for teleporting a qubit in the experiment, which are both higher than the theoretical value of control power in 2-dimensional CQT protocol (33%). The results fully demonstrate the advantages of high-dimensional multi-partite entangled networks and provide new avenues for constructing complex quantum networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  2. X.-M. Hu, Y. Guo, B.-H. Liu, C.-F. Li, and G.-C. Guo, Nat. Rev. Phys. 5, 339C353 (2023).

    Article  Google Scholar 

  3. R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, Nature 430, 849 (2004).

    Article  ADS  Google Scholar 

  4. M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, Phys. Rev. Lett. 71, 4287 (1993).

    Article  ADS  Google Scholar 

  5. J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, Phys. Rev. Lett. 80, 3891 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  6. T. Jennewein, G. Weihs, J. W. Pan, and A. Zeilinger, Phys. Rev. Lett. 88, 017903 (2001).

    Article  ADS  Google Scholar 

  7. S. Liu, Y. Lou, Y. Chen, and J. Jing, Phys. Rev. Lett. 128, 060503 (2022).

    Article  ADS  Google Scholar 

  8. J. Dias, and T. C. Ralph, Phys. Rev. A 95, 022312 (2017).

    Article  ADS  Google Scholar 

  9. E. Shchukin, and P. van Loock, Phys. Rev. Lett. 128, 150502 (2022).

    Article  ADS  Google Scholar 

  10. D. Gottesman, and I. L. Chuang, Nature 402, 390 (1999).

    Article  ADS  Google Scholar 

  11. R. Raussendorf, and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).

    Article  ADS  Google Scholar 

  12. E. Altman, K. R. Brown, G. Carleo, L. D. Carr, E. Demler, C. Chin, B. DeMarco, S. E. Economou, M. A. Eriksson, K. M. C. Fu, M. Greiner, K. R. A. Hazzard, R. G. Hulet, A. J. Kollar, B. L. Lev, M. D. Lukin, R. Ma, X. Mi, S. Misra, C. Monroe, K. Murch, Z. Nazario, K. K. Ni, A. C. Potter, P. Roushan, M. Saffman, M. Schleier-Smith, I. Siddiqi, R. Simmonds, M. Singh, I. B. Spielman, K. Temme, D. S. Weiss, J. Vučković, V. Vuletić, J. Ye, and M. Zwierlein, PRX Quantum 2, 017003 (2021).

    Article  Google Scholar 

  13. B. Li, Y. Cao, Y. H. Li, W. Q. Cai, W. Y. Liu, J. G. Ren, S. K. Liao, H. N. Wu, S. L. Li, L. Li, N. L. Liu, C. Y. Lu, J. Yin, Y. A. Chen, C. Z. Peng, and J. W. Pan, Phys. Rev. Lett. 128, 170501 (2022).

    Article  ADS  Google Scholar 

  14. J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, and J. W. Pan, Nature 488, 185 (2012).

    Article  ADS  Google Scholar 

  15. X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, Nature 489, 269 (2012).

    Article  ADS  Google Scholar 

  16. J. G. Ren, P. Xu, H. L. Yong, L. Zhang, S. K. Liao, J. Yin, W. Y. Liu, W. Q. Cai, M. Yang, L. Li, K. X. Yang, X. Han, Y. Q. Yao, J. Li, H. Y. Wu, S. Wan, L. Liu, D. Q. Liu, Y. W. Kuang, Z. P. He, P. Shang, C. Guo, R. H. Zheng, K. Tian, Z. C. Zhu, N. L. Liu, C. Y. Lu, R. Shu, Y. A. Chen, C. Z. Peng, J. Y. Wang, and J. W. Pan, Nature 549, 70 (2017).

    Article  ADS  Google Scholar 

  17. S. Liu, Y. Lou, and J. Jing, Nat. Commun. 11, 3875 (2020).

    Article  ADS  Google Scholar 

  18. X. M. Hu, C. Zhang, B. H. Liu, Y. Cai, X. J. Ye, Y. Guo, W. B. Xing, C. X. Huang, Y. F. Huang, C. F. Li, and G. C. Guo, Phys. Rev. Lett. 125, 230501 (2020).

    Article  ADS  Google Scholar 

  19. Y. H. Luo, H. S. Zhong, M. Erhard, X. L. Wang, L. C. Peng, M. Krenn, X. Jiang, L. Li, N. L. Liu, C. Y. Lu, A. Zeilinger, and J. W. Pan, Phys. Rev. Lett. 123, 070505 (2019).

    Article  ADS  Google Scholar 

  20. H. Yonezawa, S. L. Braunstein, and A. Furusawa, Phys. Rev. Lett. 99, 110503 (2007).

    Article  ADS  Google Scholar 

  21. M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, Nature 429, 737 (2004).

    Article  ADS  Google Scholar 

  22. S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L. M. Duan, and C. Monroe, Science 323, 486 (2009).

    Article  ADS  Google Scholar 

  23. C. Nolleke, A. Neuzner, A. Reiserer, C. Hahn, G. Rempe, and S. Ritter, Phys. Rev. Lett. 110, 140403 (2013).

    Article  ADS  Google Scholar 

  24. W. Pfaff, B. J. Hensen, H. Bernien, S. B. van Dam, M. S. Blok, T. H. Taminiau, M. J. Tiggelman, R. N. Schouten, M. Markham, D. J. Twitchen, and R. Hanson, Science 345, 532 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Wehner, D. Elkouss, and R. Hanson, Science 362, eaam9288 (2018).

    Article  ADS  Google Scholar 

  26. A. Karlsson, and M. Bourennane, Phys. Rev. A 58, 4394 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  27. F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, Phys. Rev. A 72, 022338 (2005).

    Article  ADS  Google Scholar 

  28. T. Wang, G. Yang, and C. Wang, Phys. Rev. A 101, 012323 (2020).

    Article  ADS  Google Scholar 

  29. J. D. Bancal, J. Barrett, N. Gisin, and S. Pironio, Phys. Rev. A 88, 014102 (2013).

    Article  ADS  Google Scholar 

  30. Y. L. Mao, Z. D. Li, S. Yu, and J. Fan, Phys. Rev. Lett. 129, 150401 (2022).

    Article  ADS  Google Scholar 

  31. M. G. M. Moreno, S. Brito, R. V. Nery, and R. Chaves, Phys. Rev. A 101, 052339 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  32. S. Gangopadhyay, T. Wang, A. Mashatan, and S. Ghose, Phys. Rev. A 106, 052433 (2022).

    Article  ADS  Google Scholar 

  33. Y. A. Chen, A. N. Zhang, Z. Zhao, X. Q. Zhou, C. Y. Lu, C. Z. Peng, T. Yang, and J. W. Pan, Phys. Rev. Lett. 95, 200502 (2005).

    Article  ADS  Google Scholar 

  34. H. J. Cao, Y. F. Yu, Q. Song, and L. X. Gao, Int. J. Theor. Phys. 54, 1325 (2015).

    Article  Google Scholar 

  35. N. F. Gong, T. J. Wang, and S. Ghose, Phys. Rev. A 103, 052601 (2021).

    Article  ADS  Google Scholar 

  36. W. X. Duan, and T. J. Wang, Phys. Rev. A 105, 052417 (2022).

    Article  ADS  Google Scholar 

  37. J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, Phys. Rev. A 59, 4249 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  38. A. Serafini, S. Mancini, and S. Bose, Phys. Rev. Lett. 96, 010503 (2006).

    Article  ADS  Google Scholar 

  39. H. Yonezawa, T. Aoki, and A. Furusawa, Nature 431, 430 (2004).

    Article  ADS  Google Scholar 

  40. A. Barasiński, A. Černoch, and K. Lemr, Phys. Rev. Lett. 122, 170501 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  41. D. Bacco, J. F. F. Bulmer, M. Erhard, M. Huber, and S. Paesani, Phys. Rev. A 104, 052618 (2021).

    Article  ADS  Google Scholar 

  42. X. H. Li, and S. Ghose, Phys. Rev. A 90, 052305 (2014).

    Article  ADS  Google Scholar 

  43. M. Erhard, M. Malik, M. Krenn, and A. Zeilinger, Nat. Photon. 12, 759 (2018).

    Article  ADS  Google Scholar 

  44. J. Bao, Z. Fu, T. Pramanik, J. Mao, Y. Chi, Y. Cao, C. Zhai, Y. Mao, T. Dai, X. Chen, X. Jia, L. Zhao, Y. Zheng, B. Tang, Z. Li, J. Luo, W. Wang, Y. Yang, Y. Peng, D. Liu, D. Dai, Q. He, A. L. Muthali, L. K. Oxenl?we, C. Vigliar, S. Paesani, H. Hou, R. Santagati, J. W. Silverstone, A. Laing, M. G. Thompson, J. L. O’Brien, Y. Ding, Q. Gong, and J. Wang, Nat. Photon. 17, 573 (2023).

    Article  ADS  Google Scholar 

  45. A. Barasiński, and J. Svozilík, Phys. Rev. A 99, 012306 (2019).

    Article  ADS  Google Scholar 

  46. X. M. Hu, Y. Guo, B. H. Liu, Y. F. Huang, C. F. Li, and G. C. Guo, Sci. Adv. 4, eaat9304 (2018).

    Article  ADS  Google Scholar 

  47. W. B. Xing, X. M. Hu, Y. Guo, B. H. Liu, C. F. Li, and G. C. Guo, Opt. Express 31, 24887 (2023).

    Article  ADS  Google Scholar 

  48. B. Y. Xu, L. K. Chen, J. T. Lin, L. T. Feng, R. Niu, Z. Y. Zhou, R. H. Gao, C. H. Dong, G. C. Guo, Q. H. Gong, Y. Cheng, Y. F. Xiao, and X. F. Ren, Sci. China-Phys. Mech. Astron. 65, 294262 (2022).

    Article  ADS  Google Scholar 

  49. S. Kocsis, M. J. W. Hall, A. J. Bennet, D. J. Saunders, and G. J. Pryde, Nat. Commun. 6, 5886 (2015).

    Article  ADS  Google Scholar 

  50. Y. Guo, S. Cheng, X. Hu, B. H. Liu, E. M. Huang, Y. F. Huang, C. F. Li, G. C. Guo, and E. G. Cavalcanti, Phys. Rev. Lett. 123, 170402 (2019).

    Article  ADS  Google Scholar 

  51. I. D. Ivonovic, J. Phys. A Math. Theor. 14, 3241 (1981).

    ADS  Google Scholar 

  52. H. J. Kimble, Nature 453, 1023 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tie-Jun Wang, Bi-Heng Liu or Chuan-Feng Li.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFE0113100), the National Natural Science Foundation of China (Grant Nos. 11904357, 12174367, 12204458, 12374338, 62071064, and 62322513), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301200), the Fundamental Research Funds for the Central Universities, USTC Tang Scholarship, Science and Technological Fund ofAnhui Province for Outstanding Youth (Grant No. 2008085J02), the China Postdoctoral Science Foundation (Grant No. 2021M700138), the China Postdoctoral for Innovative Talents (Grant No. BX2021289), and the Shanghai Municipal Science and Technology Fundamental Project (Grant No. 21JC1405400). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, MY., Hu, XM., Gong, NF. et al. Demonstration of controlled high-dimensional quantum teleportation. Sci. China Phys. Mech. Astron. 67, 230311 (2024). https://doi.org/10.1007/s11433-023-2286-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2286-8

Navigation