Skip to main content
Log in

Stochastic resonance of spinor condensates in optical cavity

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Stochastic resonance is a phenomenon in which adding random noise to a system enhances the detection or transmission of a weak signal. It occurs when the noise interacts with the system’s nonlinearity, thus improving signal-to-noise ratio and increasing sensitivity. Although parametric resonances in an atomic spinor Bose-Einstein condensate have been investigated, the question of whether one can observe stochastic resonance in such a system persists. In this study we propose a scheme for generating stochastic resonance in a cavity-spinor Bose-Einstein condensate coupling system. We demonstrate stochastic resonance through numerical calculations using the mean-field theory and truncated Wigner approximation methods. Furthermore, the characteristics of the system’s response to noise and periodic signals are studied in detail. This study unravels a new scheme for observing stochastic resonance via linking atomic many-body physics with cavity quantum electrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A-Math. Gen. 14, L453 (1981).

    Article  ADS  Google Scholar 

  2. H. Wu, A. Joshi, and M. Xiao, J. Modern Opt. 54, 2441 (2007).

    Article  ADS  Google Scholar 

  3. L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998).

    Article  ADS  Google Scholar 

  4. R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, SIAM J. Appl. Math. 43, 565 (1983).

    Article  Google Scholar 

  5. T. Wellens, V. Shatokhin, and A. Buchleitner, Rep. Prog. Phys. 67, 45 (2004).

    Article  ADS  Google Scholar 

  6. D. S. Leonard, and L. E. Reichl, Phys. Rev. E 49, 1734 (1994).

    Article  ADS  Google Scholar 

  7. C. Escudero, Phys. Rev. E 74, 010103 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  8. D. Mondal, and M. Muthukumar, J. Chem. Phys. 144, (2016).

  9. B. Kosko, and S. Mitaim, Phys. Rev. E 64, 051110 (2001).

    Article  ADS  Google Scholar 

  10. Z. Shao, Z. Yin, H. Song, W. Liu, X. Li, J. Zhu, K. Biermann, L. L. Bonilla, H. T. Grahn, and Y. Zhang, Phys. Rev. Lett. 121, 086806 (2018).

    Article  ADS  Google Scholar 

  11. D. R. Chialvo, A. Longtin, and J. Müller-Gerking, Phys. Rev. E 55, 1798 (1997).

    Article  ADS  Google Scholar 

  12. V. Galdi, V. Pierro, and I. M. Pinto, Phys. Rev. E 57, 6470 (1998).

    Article  ADS  Google Scholar 

  13. A. Longtin, J. Stat. Phys. 70, 309 (1993).

    Article  ADS  Google Scholar 

  14. F. Moss, Clin. Neurophysiol. 115, 267 (2004).

    Article  Google Scholar 

  15. R. Lofstedt, and S. N. Coppersmith, Phys. Rev. Lett. 72, 1947 (1994).

    Article  ADS  Google Scholar 

  16. A. N. Omelyanchouk, S. Savelev, A. M. Zagoskin, E. Ilichev, and F. Nori, Phys. Rev. B 80, 212503 (2009).

    Article  ADS  Google Scholar 

  17. D. Witthaut, J. Phys. B-At. Mol. Opt. Phys. 45, 225501 (2012).

    Article  ADS  Google Scholar 

  18. Q. Qiu, S. Tao, C. Liu, S. Guan, M. Xie, and B. Fan, Phys. Rev. A 96, 063808 (2017).

    Article  ADS  Google Scholar 

  19. B. Fan, and M. Xie, Phys. Rev. A 95, 023808 (2017).

    Article  ADS  Google Scholar 

  20. Q. Mu, X. Zhao, and T. Yu, Phys. Rev. A 94, 012334 (2016).

    Article  ADS  Google Scholar 

  21. M. Xie, B. Fan, X. He, and Q. Chen, Phys. Rev. E 98, 052202 (2018).

    Article  ADS  Google Scholar 

  22. D. Yu, M. Xie, Y. Cheng, and B. Fan, Opt. Express 26, 32433 (2018).

    Article  ADS  Google Scholar 

  23. S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett. 98, 170601 (2007).

    Article  ADS  Google Scholar 

  24. X. X. Yi, C. S. Yu, L. Zhou, and H. S. Song, Phys. Rev. A 68, 052304 (2003).

    Article  ADS  Google Scholar 

  25. K. Murali, S. Sinha, W. L. Ditto, and A. R. Bulsara, Phys. Rev. Lett. 102, 104101 (2009).

    Article  ADS  Google Scholar 

  26. K. P. Singh, and S. Sinha, Phys. Rev. E 83, 046219 (2011).

    Article  ADS  Google Scholar 

  27. Y. Xu, X. Jin, and H. Zhang, Phys. Rev. E 88, 052721 (2013).

    Article  ADS  Google Scholar 

  28. K. Murali, S. Rajasekar, M. V. Aravind, V. Kohar, W. L. Ditto, and S. Sinha, Phil. Trans. R. Soc. A. 379, 20200238 (2021).

    Article  ADS  Google Scholar 

  29. D. Witthaut, F. Trimborn, and S. Wimberger, Phys. Rev. A 79, 033621 (2009).

    Article  ADS  Google Scholar 

  30. K. Hayashi, S. de Lorenzo, M. Manosas, J. M. Huguet, and F. Ritort, Phys. Rev. X 2, 031012 (2012).

    Google Scholar 

  31. F. Trimborn, D. Witthaut, H. Hennig, G. Kordas, T. Geisel, and S. Wimberger, Eur. Phys. J. D 63, 63 (2011).

    Article  ADS  Google Scholar 

  32. T. Wagner, P. Talkner, J. C. Bayer, E. P. Rugeramigabo, P. Hanggi, and R. J. Haug, Nat. Phys. 15, 330 (2019).

    Article  Google Scholar 

  33. S. F. Huelga, and M. B. Plenio, Phys. Rev. A 62, 052111 (2000).

    Article  ADS  Google Scholar 

  34. H. H. Adamyan, S. B. Manvelyan, and G. Y. Kryuchkyan, Phys. Rev. A 63, 022102 (2001).

    Article  ADS  Google Scholar 

  35. M. Grifoni, and P. Hanggi, Phys. Rev. Lett. 76, 1611 (1996).

    Article  ADS  Google Scholar 

  36. D. Witthaut, F. Trimborn, and S. Wimberger, Phys. Rev. Lett. 101, 200402 (2008).

    Article  ADS  Google Scholar 

  37. T. M. Hoang, M. Anquez, B. A. Robbins, X. Y. Yang, B. J. Land, C. D. Hamley, and M. S. Chapman, Nat. Commun. 7, 11233 (2016).

    Article  ADS  Google Scholar 

  38. B. Evrard, A. Qu, K. Jimenez-Garcia, J. Dalibard, and F. Gerbier, Phys. Rev. A 100, 023604 (2019).

    Article  ADS  Google Scholar 

  39. D. M. Stamper-Kurn, and M. Ueda, Rev. Mod. Phys. 85, 1191 (2013).

    Article  ADS  Google Scholar 

  40. Y. Kawaguchi, and M. Ueda, Phys. Rep. 520, 253 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  41. H. Pu, C. K. Law, S. Raghavan, J. H. Eberly, and N. P. Bigelow, Phys. Rev. A 60, 1463 (1999).

    Article  ADS  Google Scholar 

  42. H. Pu, S. Raghavan, and N. P. Bigelow, Phys. Rev. A 61, 023602 (2000).

    Article  ADS  Google Scholar 

  43. W. Zhang, D. L. Zhou, M. S. Chang, M. S. Chapman, and L. You, Phys. Rev. A 72, 013602 (2005).

    Article  ADS  Google Scholar 

  44. Y.-Q. Zou, L.-N. Wu, Q. Liu, X. Luo, S.-F Guo, J.-H. Cao, M. Tey, and L. You, Proc. Natl. Acad. Sci. USA 115, 6381 (2018).

    Article  ADS  Google Scholar 

  45. Q. Liu, L. N. Wu, J. H. Cao, T. W. Mao, X. W. Li, S. F. Guo, M. K. Tey, and L. You, Nat. Phys. 18, 167 (2022).

    Article  ADS  Google Scholar 

  46. Y. Imaeda, K. Fujimoto, and Y. Kawaguchi, Phys. Rev. Res. 3, 043090 (2021).

    Article  Google Scholar 

  47. K. Fujimoto, and S. Uchino, Phys. Rev. Res. 1, 033132 (2019).

    Article  Google Scholar 

  48. P. Xu, and W. Zhang, Phys. Rev. A 104, 023324 (2021).

    Article  ADS  Google Scholar 

  49. Y. Zhang, Y. Chen, H. Lyu, and Y. Zhang, Phys. Rev. Res. 5, 023160 (2023).

    Article  Google Scholar 

  50. L. Zhou, H. Pu, H. Y. Ling, and W. Zhang, Phys. Rev. Lett. 103, 160403 (2009).

    Article  ADS  Google Scholar 

  51. Z. C. Li, Q. H. Jiang, Z. Lan, W. Zhang, and L. Zhou, Phys. Rev. A 100, 033617 (2019).

    Article  ADS  Google Scholar 

  52. F. Mivehvar, F. Piazza, T. Donner, and H. Ritsch, Adv. Phys. 70, 1 (2021).

    Article  ADS  Google Scholar 

  53. T. L. Ho, Phys. Rev. Lett. 81, 742 (1998).

    Article  ADS  Google Scholar 

  54. H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, Rev. Mod. Phys. 85, 553 (2013).

    Article  ADS  Google Scholar 

  55. L. Zhou, H. Pu, H. Y. Ling, K. Zhang, and W. Zhang, Phys. Rev. A 81, 063641 (2010).

    Article  ADS  Google Scholar 

  56. L. Gammaitoni, F. Marchesoni, and S. Santucci, Phys. Rev. Lett. 74, 1052 (1995).

    Article  ADS  Google Scholar 

  57. R. W. Boyd, Nonlinear Optics (Academic Press, Boston, 2003).

    Google Scholar 

  58. A. Sinatra, C. Lobo, and Y. Castin, J. Phys. B-At. Mol. Opt. Phys. 35, 3599 (2002).

    Article  ADS  Google Scholar 

  59. P. B. Blakie, A. S. Bradley, M. J. Davis, R. J. Ballagh, and C. W. Gardiner, Adv. Phys. 57, 363 (2008).

    Article  ADS  Google Scholar 

  60. A. Polkovnikov, Ann. Phys. 325, 1790 (2010).

    Article  ADS  Google Scholar 

  61. J. G. Cosme, and O. Fialko, Phys. Rev. A 90, 053602 (2014).

    Article  ADS  Google Scholar 

  62. G. Kordas, S. Wimberger, and D. Witthaut, Phys. Rev. A 87, 043618 (2013).

    Article  ADS  Google Scholar 

  63. Y. Kawaguchi, and M. Ueda, Phys. Rev. A 84, 053616 (2011).

    Article  ADS  Google Scholar 

  64. M. Grifoni, and P. Hanggi, Phys. Rev. E 54, 1390 (1996).

    Article  ADS  Google Scholar 

  65. S. Dello Russo, A. Elefante, D. Dequal, D. K. Pallotti, L. Santamaria Amato, F. Sgobba, and M. Siciliani de Cumis, Photonics 9, 470 (2022).

    Article  Google Scholar 

  66. B. Megyeri, G. Harvie, A. Lampis, and J. Goldwin, Phys. Rev. Lett. 121, 163603 (2018).

    Article  ADS  Google Scholar 

  67. S. Schuster, P. Wolf, D. Schmidt, S. Slama, and C. Zimmermann, Phys. Rev. Lett. 121, 223601 (2018).

    Article  ADS  Google Scholar 

  68. D. Witthaut, F. Trimborn, and S. Wimberger, Phys. Rev. A 79, 033621 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Zhou.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0303200), the National Natural Science Foundation of China (Grant Nos. 12074120, 12234014, 11654005, 11964014, and 12364046), the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), the National Key Research and Development Program of China (Grant No. 2016YFA0302001), the Innovation Program of the Shanghai Municipal Education Commision (Grant No. 202101070008E00099), the Major Discipline Academic and Technical Leader Training Program of Jiangxi Province (Grant No. 20204BCJ23026), and the Fundamental Research Funds for the Central Universities. Weiping Zhang acknowledges additional support from the Shanghai Talent Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZC., Fan, B., Zhou, L. et al. Stochastic resonance of spinor condensates in optical cavity. Sci. China Phys. Mech. Astron. 67, 233011 (2024). https://doi.org/10.1007/s11433-023-2278-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2278-2

Navigation