Skip to main content
Log in

Unconventional phonon spectra and obstructed edge phonon modes

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Based on the elementary band representations (EBR), many topologically trivial materials are classified as unconventional ones (obstructed atomic limit), where the EBR decomposition for a set of electronic states is not consistent with atomic valence-electron band representations. In the work, we identify that the unconventional nature can also exist in phonon spectra, where the EBR decomposition for a set of well-separated phonon modes is not consistent with atomic vibration band representations (ABR). The unconventionality has two types: type I is on an empty site; and type II is on an atom site with non-atomic vibration orbitals. The unconventionality is described by the nonzero real-space invariant at the site. Our detailed calculations show that the black phosphorus (BP) has the type I unconventional phonon spectrum, while 1H-MoSe2 has the type II one, although their electronic structures are also unconventional. Accordingly, the obstructed phonon modes are obtained for two types of unconventional phonon spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C. Felser, M. I. Aroyo, and B. A. Bernevig, Nature 547, 298 (2017), arXiv: 1703.02050.

    Article  ADS  PubMed  CAS  Google Scholar 

  2. S. Nie, Y. Qian, J. Gao, Z. Fang, H. Weng, and Z. Wang, Phys. Rev. B 103, 205133 (2021), arXiv: 2012.02203.

    Article  ADS  CAS  Google Scholar 

  3. S. Nie, B. A. Bernevig, and Z. Wang, Phys. Rev. Res. 3, L012028 (2021), arXiv: 2006.12502.

    Article  CAS  Google Scholar 

  4. J. Gao, Y. Qian, H. Jia, Z. Guo, Z. Fang, M. Liu, H. Weng, and Z. Wang, Sci. Bull. 67, 598 (2022), arXiv: 2106.08035.

    Article  CAS  Google Scholar 

  5. G. Li, Y. Xu, Z. Song, Q. Yang, U. Gupta, V. Seta, Y. Sun, P. Sessi, S. S. P. Parkin, B. A. Bernevig, and C. Felser, arXiv: 2111.02435.

  6. Y. Xu, L. Elcoro, G. Li, Z.-D. Song, N. Regnault, Q. Yang, Y. Sun, S. Parkin, C. Felser, and B. A. Bernevig, arXiv: 2111.02433.

  7. D. Shao, J. Deng, H. Sheng, R. Zhang, H. Weng, Z. Fang, X. Q. Chen, Y. Sun, and Z. Wang, Research 6, 0042 (2023), arXiv: 2208.07212.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  8. W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Science 357, 61 (2017), arXiv: 1611.07987.

    Article  ADS  PubMed  CAS  Google Scholar 

  9. W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Phys. Rev. B 96, 245115 (2017), arXiv: 1708.04230.

    Article  ADS  Google Scholar 

  10. F. Schindler, M. Brzezińska, W. A. Benalcazar, M. Iraola, A. Bouhon, S. S. Tsirkin, M. G. Vergniory, and T. Neupert, Phys. Rev. Res. 1, 033074 (2019), arXiv: 1907.10607.

    Article  CAS  Google Scholar 

  11. Y. Xu, L. Elcoro, Z.-D. Song, M. G. Vergniory, C. Felser, S. S. P. Parkin, N. Regnault, J. L. Maries, and B. A. Bernevig, arXiv: 2106.10276.

  12. R. Zhang, J. Deng, Y. Sun, Z. Fang, Z. Guo, and Z. Wang, Phys. Rev. Res. 5, 023142 (2023), arXiv: 2211.04116.

    Article  CAS  Google Scholar 

  13. Y. Xu, M. G. Vergniory, D.-S. Ma, J. L. Manes, Z.-D. Song, B. A. Bernevig, N. Regnault, and L. Elcoro, arXiv: 2211.11776.

  14. H. B. Ribeiro, C. E. P. Villegas, D. A. Bahamon, D. Muraca, A. H. Castro Neto, E. A. T. de Souza, A. R. Rocha, M. A. Pimenta, and C. J. S. de Matos, Nat. Commun. 7, 12191 (2016), arXiv: 1605.00032.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  15. X. Wang, N. Mao, W. Luo, H. Kitadai, and X. Ling, J. Phys. Chem. Lett. 9, 2830 (2018).

    Article  PubMed  CAS  Google Scholar 

  16. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.-Condens. Matter 21, 395502 (2009), arXiv: 0906.2569.

    Article  PubMed  Google Scholar 

  17. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H. V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, J. Phys.-Condens. Matter 29, 465901 (2017), arXiv: 1709.10010.

    Article  PubMed  CAS  Google Scholar 

  18. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  19. G. Kresse, and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  CAS  Google Scholar 

  20. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  PubMed  CAS  Google Scholar 

  21. J. Gao, Q. Wu, C. Persson, and Z. Wang, Comput. Phys. Commun. 261, 107760 (2021).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhilong Yang or Zhijun Wang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974395, and 12188101), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000), the National Key R&D Program of Chain (Grant No. 2022YFA1403800), and the Center for Materials Genome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Sheng, H., Deng, J. et al. Unconventional phonon spectra and obstructed edge phonon modes. Sci. China Phys. Mech. Astron. 67, 246811 (2023). https://doi.org/10.1007/s11433-023-2271-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2271-y

Navigation