Skip to main content
Log in

Uncovering the magnetic response of open-shell graphene nanostructures on metallic surfaces at different doping levels

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Open-shell graphene nanostructures (GNs) are promising candidates for future spintronics and quantum technologies. Recent progress based on on-surface synthetic approach has successfully created such GNs on metallic surfaces. Meanwhile, the doping effect of metallic surfaces is inevitably present and can significantly tune their electronic and magnetic properties. Here, we investigate the zigzag end states of open-shell 7-armchair graphene nanoribbons (7-AGNRs) on Au(111), Au(100) and Ag(111) surfaces. Combined with the manipulation of a scanning tunneling microscope, we demonstrate that the end states can be tuned from empty states to singly occupied states and to doubly occupied states by substrate doping. Furthermore, the singly occupied states can be finely tuned, with the occupancy number of the states and related magnetic behaviors uncovered by experiments at different temperatures and magnetic fields. Our results provide a comprehensive study of the magnetic response of open-shell GNs on metallic surfaces at different doping levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. Song, J. Su, M. Telychko, J. Li, G. Li, Y. Li, C. Su, J. Wu, and J. Lu, Chem. Soc. Rev. 50, 3238 (2021).

    Article  Google Scholar 

  2. H. Wang, H. S. Wang, C. Ma, L. Chen, C. Jiang, C. Chen, X. Xie, A. P. Li, and X. Wang, Nat. Rev. Phys. 3, 791 (2021).

    Article  Google Scholar 

  3. D. G. de Oteyza, and T. Frederiksen, J. Phys.-Condens. Matter 34, 443001 (2022).

    Article  Google Scholar 

  4. Q. Sun, R. Zhang, J. Qiu, R. Liu, and W. Xu, Adv. Mater. 30, 1705630 (2018).

    Article  Google Scholar 

  5. S. Clair, and D. G. de Oteyza, Chem. Rev. 119, 4717 (2019).

    Article  Google Scholar 

  6. S. Mishra, X. Yao, Q. Chen, K. Eimre, O. Gröning, R. Ortiz, M. Di Giovannantonio, J. C. Sancho-García, J. Fernández-Rossier, C. A. Pignedoli, K. Müllen, P. Ruffieux, A. Narita, and R. Fasel, Nat. Chem. 13, 581 (2021).

    Article  Google Scholar 

  7. J. Li, N. Friedrich, N. Merino, D. G. de Oteyza, D. Peña, D. Jacob, and J. I. Pascual, Nano Lett. 19, 3288 (2019).

    Article  ADS  Google Scholar 

  8. J. Li, S. Sanz, M. Corso, D. J. Choi, D. Peña, T. Frederiksen, and J. I. Pascual, Nat. Commun. 10, 200 (2019).

    Article  ADS  Google Scholar 

  9. J. Lawrence, P. Brandimarte, A. Berdonces-Layunta, M. S. G. Mohammed, A. Grewal, C. C. Leon, D. Sánchez-Portal, and D. G. de Oteyza, ACS Nano 14, 4499 (2020).

    Article  Google Scholar 

  10. S. Mishra, D. Beyer, R. Berger, J. Liu, O. Gröning, J. I. Urgel, K. Müllen, P. Ruffieux, X. Feng, and R. Fasel, J. Am. Chem. Soc. 142, 1147 (2020).

    Article  Google Scholar 

  11. Y. Zhao, K. Jiang, C. Li, Y. Liu, C. Xu, W. Zheng, D. Guan, Y. Li, H. Zheng, C. Liu, W. Luo, J. Jia, X. Zhuang, and S. Wang, J. Am. Chem. Soc. 142, 18532 (2020).

    Article  Google Scholar 

  12. D. Jacob, R. Ortiz, and J. Fernández-Rossier, Phys. Rev. B 104, 075404 (2021).

    Article  ADS  Google Scholar 

  13. S. Mishra, D. Beyer, K. Eimre, S. Kezilebieke, R. Berger, O. Gröning, C. A. Pignedoli, K. Müllen, P. Liljeroth, P. Ruffieux, X. Feng, and R. Fasel, Nat. Nanotechnol. 15, 22 (2020).

    Article  ADS  Google Scholar 

  14. J. Li, S. Sanz, J. Castro-Esteban, M. Vilas-Varela, N. Friedrich, T. Frederiksen, D. Peña, and J. I. Pascual, Phys. Rev. Lett. 124, 177201 (2020).

    Article  ADS  Google Scholar 

  15. T. Wang, A. Berdonces-Layunta, N. Friedrich, M. Vilas-Varela, J. P. Calupitan, J. I. Pascual, D. Peña, D. Casanova, M. Corso, and D. G. de Oteyza, J. Am. Chem. Soc. 144, 4522 (2022).

    Article  Google Scholar 

  16. S. Mishra, D. Beyer, K. Eimre, J. Liu, R. Berger, O. Gröning, C. A. Pignedoli, K. Müllen, R. Fasel, X. Feng, and P. Ruffieux, J. Am. Chem. Soc. 141, 10621 (2019).

    Article  Google Scholar 

  17. J. Su, W. Fan, P. Mutombo, X. Peng, S. Song, M. Ondráček, P. Golub, J. Brabec, L. Veis, M. Telychko, P. Jelínek, J. Wu, and J. Lu, Nano Lett. 21, 861 (2021).

    Article  ADS  Google Scholar 

  18. K. Biswas, D. Soler, S. Mishra, Q. Chen, X. Yao, A. Sánchez-Grande, K. Eimre, P. Mutombo, C. Martín-Fuentes, K. Lauwaet, J. M. Gallego, P. Ruffieux, C. A. Pignedoli, K. Müllen, R. Miranda, J. I. Urgel, A. Narita, R. Fasel, P. Jelínek, and D. Écija, J. Am. Chem. Soc. 145, 2968 (2023).

    Article  Google Scholar 

  19. S. Mishra, G. Catarina, F. Wu, R. Ortiz, D. Jacob, K. Eimre, J. Ma, C. A. Pignedoli, X. Feng, P. Ruffieux, J. Fernández-Rossier, and R. Fasel, Nature 598, 287 (2021).

    Article  ADS  Google Scholar 

  20. Y. Zhao, K. Jiang, C. Li, Y. Liu, G. Zhu, M. Pizzochero, E. Kaxiras, D. Guan, Y. Li, H. Zheng, C. Liu, J. Jia, M. Qin, X. Zhuang, and S. Wang, Nat. Chem. 15, 53 (2023).

    Article  Google Scholar 

  21. K. Biswas, M. Urbani, A. Sánchez-Grande, D. Soler-Polo, K. Lauwaet, A. Matěj, P. Mutombo, L. Veis, J. Brabec, K. Pernal, J. M. Gallego, R. Miranda, D. Écija, P. Jelínek, T. Torres, and J. I. Urgel, J. Am. Chem. Soc. 144, 12725 (2022).

    Article  Google Scholar 

  22. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, Nature 466, 470 (2010).

    Article  ADS  Google Scholar 

  23. D. G. de Oteyza, A. García-Lekue, M. Vilas-Varela, N. Merino-Díez, E. Carbonell-Sanromà, M. Corso, G. Vasseur, C. Rogero, E. Guitián, J. I. Pascual, J. E. Ortega, Y. Wakayama, and D. Peña, ACS Nano 10, 9000 (2016).

    Article  Google Scholar 

  24. M. Koch, F. Ample, C. Joachim, and L. Grill, Nat. Nanotech. 7, 713 (2012).

    Article  ADS  Google Scholar 

  25. J. van der Lit, M. P. Boneschanscher, D. Vanmaekelbergh, M. Ijäs, A. Uppstu, M. Ervasti, A. Harju, P. Liljeroth, and I. Swart, Nat. Commun. 4, 2023 (2013).

    Article  ADS  Google Scholar 

  26. T. Cao, F. Zhao, and S. G. Louie, Phys. Rev. Lett. 119, 076401 (2017).

    Article  ADS  Google Scholar 

  27. A. García-Fuente, D. Carrascal, G. Ross, and J. Ferrer, Phys. Rev. B 107, 115403 (2023).

    Article  ADS  Google Scholar 

  28. S. Wang, L. Talirz, C. A. Pignedoli, X. Feng, K. Müllen, R. Fasel, and P. Ruffieux, Nat. Commun. 7, 11507 (2016).

    Article  ADS  Google Scholar 

  29. M. Kolmer, A. K. Steiner, I. Izydorczyk, W. Ko, M. Engelund, M. Szymonski, A. P. Li, and K. Amsharov, Science 369, 571 (2020).

    Article  ADS  Google Scholar 

  30. K. A. Simonov, A. V. Generalov, A. S. Vinogradov, G. I. Svirskiy, A. A. Cafolla, C. McGuinness, T. Taketsugu, A. Lyalin, N. Mårtensson, and A. B. Preobrajenski, Sci. Rep. 8, 3506 (2018).

    Article  ADS  Google Scholar 

  31. I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, Rev. Sci. Instrum. 78, 013705 (2007).

    Article  ADS  Google Scholar 

  32. H. Huang, D. Wei, J. Sun, S. L. Wong, Y. P. Feng, A. H. C. Neto, and A. T. S. Wee, Sci. Rep. 2, 983 (2012).

    Article  ADS  Google Scholar 

  33. J. Hlzl, and F. K. Schulte, Work Function of Metals (Springer, Berlin, 1979).

    Book  Google Scholar 

  34. J. Kondo, Prog. Theor. Phys. 32, 37 (1964).

    Article  ADS  Google Scholar 

  35. M. Ternes, A. J. Heinrich, and W. D. Schneider, J. Phys.-Condens. Matter 21, 053001 (2009).

    Article  ADS  Google Scholar 

  36. H. O. Frota, Phys. Rev. B 45, 1096 (1992).

    Article  ADS  Google Scholar 

  37. H. Prüser, P. E. Dargel, M. Bouhassoune, R. G. Ulbrich, T. Pruschke, S. Lounis, and M. Wenderoth, Nat. Commun. 5, 5417 (2014).

    Article  ADS  Google Scholar 

  38. T. A. Costi, A. C. Hewson, and V. Zlatic, J. Phys.-Condens. Matter 6, 2519 (1994).

    Article  ADS  Google Scholar 

  39. H. G. Luo, T. Xiang, X. Q. Wang, Z. B. Su, and L. Yu, Phys. Rev. Lett. 92, 256602 (2004).

    Article  ADS  Google Scholar 

  40. Z. H. Li, Y. X. Cheng, X. Zheng, J. H. Wei, Y. J. Yan, and H. G. Luo, J. Phys.-Condens. Matter 34, 255601 (2022).

    Article  ADS  Google Scholar 

  41. K. Nagaoka, T. Jamneala, M. Grobis, and M. F. Crommie, Phys. Rev. Lett. 88, 077205 (2002).

    Article  ADS  Google Scholar 

  42. P. Wahl, L. Diekhöner, G. Wittich, L. Vitali, M. A. Schneider, and K. Kern, Phys. Rev. Lett. 95, 166601 (2005).

    Article  ADS  Google Scholar 

  43. L. Limot, J. Kröger, R. Berndt, A. Garcia-Lekue, and W. A. Hofer, Phys. Rev. Lett. 94, 126102 (2005).

    Article  ADS  Google Scholar 

  44. N. Néel, J. Kröger, L. Limot, K. Palotas, W. A. Hofer, and R. Berndt, Phys. Rev. Lett. 98, 016801 (2007).

    Article  ADS  Google Scholar 

  45. M. Ternes, C. González, C. P. Lutz, P. Hapala, F. J. Giessibl, P. Jelínek, and A. J. Heinrich, Phys. Rev. Lett. 106, 016802 (2011).

    Article  ADS  Google Scholar 

  46. S. Kahle, Magnetic Properties of Individual Molecules Studied by Scanning Tunneling Microscopy, Dissertation for the Doctoral Degree (Universität Konstanz, Konstanz, 2013), pp. 94–95.

    Google Scholar 

  47. S. Karan, N. Li, Y. Zhang, Y. He, I. P. Hong, H. Song, J. T. Lü, Y. Wang, L. Peng, K. Wu, G. S. Michelitsch, R. J. Maurer, K. Diller, K. Reuter, A. Weismann, and R. Berndt, Phys. Rev. Lett. 116, 027201 (2016).

    Article  ADS  Google Scholar 

  48. Y. Zhang, S. Kahle, T. Herden, C. Stroh, M. Mayor, U. Schlickum, M. Ternes, P. Wahl, and K. Kern, Nat. Commun. 4, 2110 (2013).

    Article  ADS  Google Scholar 

  49. T. A. Costi, Phys. Rev. Lett. 85, 1504 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingcheng Li, Dingyong Zhong or Donghui Guo.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2021B0301030002), and the National Natural Science Foundation of China (Grant Nos. 11974431, and 11774434). Jincheng Li acknowledges the support from the Hundreds of Talents Program of Sun Yat-sen University and Guangdong Science and Technology Project (Grant No. 2021QN02X859).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, Z., Wang, J., Zhang, J. et al. Uncovering the magnetic response of open-shell graphene nanostructures on metallic surfaces at different doping levels. Sci. China Phys. Mech. Astron. 67, 226812 (2024). https://doi.org/10.1007/s11433-023-2261-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2261-2

Navigation