Skip to main content
Log in

An improved bound on accelerated light dark matter

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Light (sub-GeV) dark matter has gained increasing interest in terms of direct detection. Accelerated dark matter is a promising candidate that can generate detectable nuclear recoil energy within the sub-GeV range. Because of the large kinetic energy, its interactions with the nucleus are predominantly governed by inelastic scattering, including quasi-elastic and deep inelastic scattering. In this work, we calculated the inelastic effects in dark matter-Earth scattering mediated by a vector particle. Our analysis revealed that the impact of inelastic scattering relies on the mediator mass and the kinetic energy spectrum of dark matter. The results exhibited considerable disparity: the upper bounds of the exclusion limit for the spin-independent cross-section between accelerated dark matter and nuclei via a heavy mediator differ by several tens of times when inelastic scattering is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Workman, et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

    Article  Google Scholar 

  2. B. W. Lee, and S. Weinberg, Phys. Rev. Lett. 39, 165 (1977).

    Article  ADS  Google Scholar 

  3. G. Jungman, M. Kamionkowski, and K. Griest, Phys. Rep. 267, 195 (1996).

    Article  ADS  Google Scholar 

  4. Y. Meng, et al. (PandaX-4T Collaboration), Phys. Rev. Lett. 127, 261802 (2021), arXiv: 2107.13438.

    Article  ADS  Google Scholar 

  5. J. Aalbers, et al. (LUX-ZEPLIN Collaboration), Phys. Rev. Lett. 131, 041002 (2023), arXiv: 2207.03764.

    Article  ADS  Google Scholar 

  6. E. Aprile, et al. (XENON Collaboration), Phys. Rev. Lett. 131, 041003 (2023), arXiv: 2303.14729.

    Article  ADS  Google Scholar 

  7. R. Essig, J. Mardon, and T. Volansky, Phys. Rev. D 85, 076007 (2012), arXiv: 1108.5383.

    Article  ADS  Google Scholar 

  8. Y. Hochberg, Y. Zhao, and K. M. Zurek, Phys. Rev. Lett. 116, 011301 (2016), arXiv: 1504.07237.

    Article  ADS  Google Scholar 

  9. R. Essig, M. Fernández-Serra, J. Mardon, A. Soto, T. Volansky, and T. T. Yu, J. High Energ. Phys. 5, 046 (2016).

    Article  ADS  Google Scholar 

  10. R. Essig, T. Volansky, and T. T. Yu, Phys. Rev. D 96, 043017 (2017), arXiv: 1703.00910.

    Article  ADS  Google Scholar 

  11. S. Knapen, T. Lin, and K. M. Zurek, Phys. Rev. D 96, 115021 (2017), arXiv: 1709.07882.

    Article  ADS  Google Scholar 

  12. G. Bertone, and T. M. P. Tait, Nature 562, 51 (2018), arXiv: 1810.01668.

    Article  ADS  Google Scholar 

  13. R. T. D’Agnolo, C. Mondino, J. T. Ruderman, and P. J. Wang, J. High Energ. Phys. 2018(08), 79 (2018).

    Article  Google Scholar 

  14. J. Yang, A. Abdukerim, W. Chen, X. Chen, Y. Chen, C. Cheng, X. Cui, Y. Fan, D. Fang, C. Fu, M. Fu, L. Geng, K. Giboni, L. Gu, X. Guo, K. Han, C. He, S. He, D. Huang, Y. Huang, R. Huo, Y. Huang, Z. Huang, X. Ji, Y. Ju, S. Li, Q. Lin, H. Liu, J. Liu, X. Lu, W. Ma, Y. Ma, Y. Mao, Y. Meng, N. Shaheed, K. Ni, J. Ning, X. Ning, X. Ren, C. Shang, G. Shen, L. Si, A. Tan, A. Wang, H. Wang, M. Wang, Q. H. Wang, S. Wang, W. Wang, X. Wang, Z. Wang, M. Wu, S. Wu, W. Wu, J. Xia, M. Xiao, X. Xiao, P. Xie, B. Yan, Y. Yang, C. Yu, H. B. Yu, J. Yuan, Y. Yuan, X. Zeng, D. Zhang, T. Zhang, L. Zhao, Q. Zheng, J. Zhou, N. Zhou, X. Zhou, and PandaX-II Collaboration, Sci. China-Phys. Mech. Astron. 64, 111062 (2021), arXiv: 2104.14724.

    Article  ADS  Google Scholar 

  15. L. Su, L. Wu, and B. Zhu, Phys. Rev. D 105, 055021 (2022), arXiv: 2105.06326.

    Article  ADS  Google Scholar 

  16. R. Calabrese, M. Chianese, D. F. G. Fiorillo, and N. Saviano, Phys. Rev. D 105, L021302 (2022), arXiv: 2107.13001.

    Article  ADS  Google Scholar 

  17. G. Elor, R. McGehee, and A. Pierce, Phys. Rev. Lett. 130, 031803 (2023).

    Article  ADS  Google Scholar 

  18. H. B. Yang, X. Q. Li, Y. H. Yu, Y. Chen, J. Kong, Y. J. Zhang, S. W. Tang, J. H. Guo, B. Yang, F. J. Su, W. J. Sun, J. X. Wang, and C. X. Zhao, Nucl. Sci. Tech. 33, 65 (2022).

    Article  Google Scholar 

  19. R. Calabrese, M. Chianese, D. F. G. Fiorillo, and N. Saviano, Phys. Rev. D 105, 103024 (2022), arXiv: 2203.17093.

    Article  ADS  Google Scholar 

  20. A. Ambrosone, M. Chianese, D. F. G. Fiorillo, A. Marinelli, and G. Miele, Phys. Rev. Lett. 131, 111003 (2023), arXiv: 2210.05685.

    Article  ADS  Google Scholar 

  21. P. W. Graham, D. E. Kaplan, S. Rajendran, and M. T. Walters, Phys. Dark Universe 1, 32 (2012), arXiv: 1203.2531.

    Article  ADS  Google Scholar 

  22. Y. Hochberg, T. Lin, and K. M. Zurek, Phys. Rev. D 95, 023013 (2017), arXiv: 1608.01994.

    Article  ADS  Google Scholar 

  23. I. M. Bloch, R. Essig, K. Tobioka, T. Volansky, and T. T. Yu, J. High Energ. Phys. 2017(06), 087 (2017).

    Article  Google Scholar 

  24. R. M. J. Li, S. K. Liu, S. T. Lin, L. T. Yang, Q. Yue, C. H. Fang, H. T. Jia, X. Jiang, Q. Y. Li, Y. Liu, Y. L. Yan, K. K. Zhao, L. Zhang, C. J. Tang, H. Y. Xing, and J. J. Zhu, Nucl. Sci. Tech. 33, 57 (2022).

    Article  Google Scholar 

  25. Y. Gu, L. Wu, and B. Zhu, Phys. Rev. D 106, 075004 (2022), arXiv: 2203.06664.

    Article  ADS  Google Scholar 

  26. H. T. Jia, S. T. Lin, S. K. Liu, H. C. Chi, M. Deniz, C. H. Fang, P. Gu, X. Jiang, Y. K. Shu, Q. Y. Li, Y. Liu, R. M. J. Li, C. K. Qiao, C. J. Tang, H. T. K. Wong, H. Y. Xing, L. T. Yang, Q. Yue, Y. L. Yan, K. K. Zhao, and J. J. Zhu, Nucl. Sci. Tech. 33, 157 (2022).

    Article  Google Scholar 

  27. Y. Hochberg, T. Lin, and K. M. Zurek, Phys. Rev. D 94, 015019 (2016), arXiv: 1604.06800.

    Article  ADS  Google Scholar 

  28. Y. Hochberg, I. Charaev, S. W. Nam, V. Verma, M. Colangelo, and K. K. Berggren, Phys. Rev. Lett. 123, 151802 (2019), arXiv: 1903.05101.

    Article  ADS  Google Scholar 

  29. S. M. Griffin, Y. Hochberg, K. Inzani, N. Kurinsky, T. Lin, and T. C. Yu, Phys. Rev. D 103, 075002 (2021), arXiv: 2008.08560.

    Article  ADS  Google Scholar 

  30. Y. Hochberg, B. V. Lehmann, I. Charaev, J. Chiles, M. Colangelo, S. W. Nam, and K. K. Berggren, Phys. Rev. D 106, 112005 (2022), arXiv: 2110.01586.

    Article  ADS  Google Scholar 

  31. C. Kouvaris, and J. Pradler, Phys. Rev. Lett. 118, 031803 (2017), arXiv: 1607.01789.

    Article  ADS  Google Scholar 

  32. C. McCabe, Phys. Rev. D 96, 043010 (2017), arXiv: 1702.04730.

    Article  ADS  Google Scholar 

  33. E. Aprile, et al. (XENON Collaboration), Phys. Rev. Lett. 123, 241803 (2019), arXiv: 1907.12771.

    Article  ADS  Google Scholar 

  34. G. G. di Cortona, A. Messina, and S. Piacentini, J. High Energ. Phys. 2020(11), 34 (2020).

    Article  Google Scholar 

  35. J. D. Vergados, and H. Ejiri, Phys. Lett. B 606, 313 (2005), arXiv: hep-ph/0401151.

    Article  ADS  Google Scholar 

  36. C. C. Moustakidis, J. D. Vergados, and H. Ejiri, Nucl. Phys. B 727, 406 (2005), arXiv: hep-ph/0507123.

    Article  ADS  Google Scholar 

  37. M. Ibe, W. Nakano, Y. Shoji, and K. Suzuki, J. High Energ. Phys. 2018(03), 194 (2018).

    Article  Google Scholar 

  38. M. J. Dolan, F. Kahlhoefer, and C. McCabe, Phys. Rev. Lett. 121, 101801 (2018), arXiv: 1711.09906.

    Article  ADS  Google Scholar 

  39. D. Baxter, Y. Kahn, and G. Krnjaic, Phys. Rev. D 101, 076014 (2020), arXiv: 1908.00012.

    Article  ADS  Google Scholar 

  40. R. Essig, J. Pradler, M. Sholapurkar, and T. T. Yu, Phys. Rev. Lett. 124, 021801 (2020), arXiv: 1908.10881.

    Article  ADS  Google Scholar 

  41. N. F. Bell, J. B. Dent, J. L. Newstead, S. Sabharwal, and T. J. Weiler, Phys. Rev. D 101, 015012 (2020), arXiv: 1905.00046.

    Article  ADS  Google Scholar 

  42. Z. L. Liang, L. Zhang, F. Zheng, and P. Zhang, Phys. Rev. D 102, 043007 (2020), arXiv: 1912.13484.

    Article  ADS  Google Scholar 

  43. K. D. Nakamura, K. Miuchi, S. Kazama, Y. Shoji, M. Ibe, and W. Nakano, Prog. Theor. Exp. Phys. 1, 013C01 (2021), arXiv: 2009.05939.

    Article  Google Scholar 

  44. Z. L. Liang, C. Mo, F. Zheng, and P. Zhang, Phys. Rev. D 104, 056009 (2021), arXiv: 2011.13352.

    Article  ADS  Google Scholar 

  45. V. V. Flambaum, L. Su, L. Wu, and B. Zhu, Sci. China-Phys. Mech. Astron. 66, 271011 (2023).

    Article  ADS  Google Scholar 

  46. J. F. Acevedo, J. Bramante, and A. Goodman, Phys. Rev. D 105, 023012 (2022), arXiv: 2108.10889.

    Article  ADS  Google Scholar 

  47. W. Wang, K. Y. Wu, L. Wu, and B. Zhu, Nucl. Phys. B 983, 115907 (2022), arXiv: 2112.06492.

    Article  Google Scholar 

  48. N. F. Bell, J. B. Dent, R. F. Lang, J. L. Newstead, and A. C. Ritter, Phys. Rev. D 105, 096015 (2022), arXiv: 2112.08514.

    Article  ADS  Google Scholar 

  49. P. Cox, M. J. Dolan, C. McCabe, and H. M. Quiney, Phys. Rev. D 107, 035032 (2023).

    Article  ADS  Google Scholar 

  50. K. V. Berghaus, A. Esposito, R. Essig, and M. Sholapurkar, J. High Energ. Phys. 2023(01), 23 (2023).

    Article  Google Scholar 

  51. J. Li, L. Su, L. Wu, and B. Zhu, J. Cosmol. Astropart. Phys. 4, 020 (2023), arXiv: 2210.15474.

    Article  ADS  Google Scholar 

  52. D. Adams, D. Baxter, H. Day, R. Essig, and Y. Kahn, Phys. Rev. D 107, L041303 (2023), arXiv: 2210.04917.

    Article  ADS  Google Scholar 

  53. N. F. Bell, P. Cox, M. J. Dolan, J. L. Newstead, and A. C. Ritter, arXiv: 2305.04690.

  54. M. Qiao, C. Xia, and Y. F. Zhou, J. Cosmol. Astropart. Phys. 2023(11), 079 (2023), arXiv: 2307.12820.

    Article  Google Scholar 

  55. T. Bringmann, and M. Pospelov, Phys. Rev. Lett. 122, 171801 (2019), arXiv: 1810.10543.

    Article  ADS  Google Scholar 

  56. Y. Ema, F. Sala, and R. Sato, Phys. Rev. Lett. 122, 181802 (2019), arXiv: 1811.00520.

    Article  ADS  Google Scholar 

  57. C. V. Cappiello, and J. F. Beacom, Phys. Rev. D 100, 103011 (2019), arXiv: 1906.11283.

    Article  ADS  Google Scholar 

  58. W. Wang, L. Wu, J. M. Yang, H. Zhou, and B. Zhu, J. High Energ. Phys. 2020(12), 72 (2020).

    Article  Google Scholar 

  59. S. F. Ge, J. Liu, Q. Yuan, and N. Zhou, Phys. Rev. Lett. 126, 091804 (2021), arXiv: 2005.09480.

    Article  ADS  Google Scholar 

  60. C. Xia, Y. H. Xu, and Y. F. Zhou, Nucl. Phys. B 969, 115470 (2021), arXiv: 2009.00353.

    Article  Google Scholar 

  61. Y. Ema, F. Sala, and R. Sato, SciPost Phys. 10, 072 (2021), arXiv: 2011.01939.

    Article  ADS  Google Scholar 

  62. N. F. Bell, J. B. Dent, B. Dutta, S. Ghosh, J. Kumar, J. L. Newstead, and I. M. Shoemaker, Phys. Rev. D 104, 076020 (2021), arXiv: 2108.00583.

    Article  ADS  Google Scholar 

  63. J. C. Feng, X. W. Kang, C. T. Lu, Y. L. S. Tsai, and F. S. Zhang, J. High Energ. Phys. 2022(04), 080 (2022).

    Article  Google Scholar 

  64. W. Wang, L. Wu, W. N. Yang, and B. Zhu, Phys. Rev. D 107, 073002 (2023).

    Article  ADS  Google Scholar 

  65. X. Cui, et al. (PandaX-II Collaboration), Phys. Rev. Lett. 128, 171801 (2022), arXiv: 2112.08957.

    Article  ADS  Google Scholar 

  66. T. N. Maity, and R. Laha, arXiv: 2210.01815.

  67. K. I. Nagao, S. Higashino, T. Naka, and K. Miuchi, J. Cosmol. Astropart. Phys. 2023(07), 061 (2023), arXiv: 2211.13399.

    Article  Google Scholar 

  68. K. Agashe, Y. Cui, L. Necib, and J. Thaler, J. Cosmol. Astropart. Phys. 2014(10), 062 (2014), arXiv: 1405.7370.

    Article  Google Scholar 

  69. J. Berger, Y. Cui, and Y. Zhao, J. Cosmol. Astropart. Phys. 2015(02), 005 (2015), arXiv: 1410.2246.

    Article  Google Scholar 

  70. K. Agashe, Y. Cui, L. Necib, and J. Thaler, J. Phys.-Conf. Ser. 718, 042041 (2016), arXiv: 1512.03782.

    Article  Google Scholar 

  71. J. Alvey, M. D. Campos, M. Fairbairn, and T. You, Phys. Rev. Lett. 123, 261802 (2019), arXiv: 1905.05776.

    Article  ADS  Google Scholar 

  72. L. Su, W. Wang, L. Wu, J. M. Yang, and B. Zhu, Phys. Rev. D 102, 115028 (2020), arXiv: 2006.11837.

    Article  ADS  Google Scholar 

  73. C. A. Arguëlles, V. Muñoz, I. M. Shoemaker, and V. Takhistov, Phys. Lett. B 833, 137363 (2022), arXiv: 2203.12630.

    Article  Google Scholar 

  74. L. Darmé, Phys. Rev. D 106, 055015 (2022), arXiv: 2205.09773.

    Article  ADS  Google Scholar 

  75. M. Du, R. Fang, and Z. Liu. arXiv: 2211.11469.

  76. H. Sieber, D. V. Kirpichnikov, I. V. Voronchikhin, P. Crivelli, S. N. Gninenko, M. M. Kirsanov, N. V. Krasnikov, L. Molina-Bueno, and S. K. Sekatskii, Phys. Rev. D 108, 056018 (2023), arXiv: 2305.09015.

    Article  ADS  Google Scholar 

  77. C. Kouvaris, and I. M. Shoemaker, Phys. Rev. D 90, 095011 (2014), arXiv: 1405.1729.

    Article  ADS  Google Scholar 

  78. R. Foot, and S. Vagnozzi, Phys. Lett. B 748, 61 (2015), arXiv: 1412.0762.

    Article  ADS  Google Scholar 

  79. B. J. Kavanagh, R. Catena, and C. Kouvaris, J. Cosmol. Astropart. Phys. 2017(01), 012 (2017), arXiv: 1611.05453.

    Article  Google Scholar 

  80. B. J. Kavanagh, Phys. Rev. D 97, 123013 (2018), arXiv: 1712.04901.

    Article  ADS  MathSciNet  Google Scholar 

  81. J. Alvey, T. Bringmann, and H. Kolesova, J. High Energ. Phys. 2023(01), 123 (2023).

    Article  Google Scholar 

  82. L. Su, L. Wu, N. Zhou, and B. Zhu, Phys. Rev. D 108, 035004 (2023), arXiv: 2212.02286.

    Article  ADS  Google Scholar 

  83. X. Ning, et al. (PandaX Collaboration), Phys. Rev. Lett. 131, 041001 (2023), arXiv: 2301.03010.

    Article  ADS  Google Scholar 

  84. C. A. Argüelles, A. Diaz, A. Kheirandish, A. Olivares-Del-Campo, I. Safa, and A. C. Vincent, Rev. Mod. Phys. 93, 035007 (2021), arXiv: 1912.09486.

    Article  ADS  Google Scholar 

  85. M. J. Boschini, S. D. Torre, M. Gervasi, D. Grandi, G. Jóhannesson, M. Kachelriess, G. L. Vacca, N. Masi, I. V. Moskalenko, E. Orlando, S. S. Ostapchenko, S. Pensotti, T. A. Porter, L. Quadrani, P. G. Rancoita, D. Rozza, and M. Tacconi, Astrophys. J. 840, 115 (2017), arXiv: 1704.06337.

    Article  ADS  Google Scholar 

  86. G. Guo, Y. L. S. Tsai, M. R. Wu, and Q. Yuan, Phys. Rev. D 102, 103004 (2020), arXiv: 2008.12137.

    Article  ADS  Google Scholar 

  87. M. Fabbrichesi, E. Gabrielli, and G. Lanfranchi, arXiv: 2005.01515.

  88. J. B. Dent, L. M. Krauss, J. L. Newstead, and S. Sabharwal, Phys. Rev. D 92, 063515 (2015), arXiv: 1505.03117.

    Article  ADS  Google Scholar 

  89. D. Aristizabal Sierra, V. De Romeri, and N. Rojas, Phys. Rev. D 98, 075018 (2018), arXiv: 1806.07424.

    Article  ADS  Google Scholar 

  90. A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht, M. Schönherr, and G. Watt, Eur. Phys. J. C 75, 132 (2015), arXiv: 1412.7420.

    Article  ADS  Google Scholar 

  91. R. Abdul Khalek, R. Gauld, T. Giani, E. R. Nocera, T. R. Rabemananjara, and J. Rojo, Eur. Phys. J. C 82, 507 (2022).

    Article  ADS  Google Scholar 

  92. O. Benhar, N. Farina, H. Nakamura, M. Sakuda, and R. Seki, Phys. Rev. D 72, 053005 (2005), arXiv: hep-ph/0506116.

    Article  ADS  Google Scholar 

  93. A. M. Ankowski, and J. T. Sobczyk, Phys. Rev. C 74, 054316 (2006), arXiv: nucl-th/0512004.

    Article  ADS  Google Scholar 

  94. A. M. Ankowski, and J. T. Sobczyk, Phys. Rev. C 77, 044311 (2008), arXiv: 0711.2031.

    Article  ADS  Google Scholar 

  95. A. M. Ankowski, O. Benhar, T. Mori, R. Yamaguchi, and M. Sakuda, Phys. Rev. Lett. 108, 052505 (2012), arXiv: 1110.0679.

    Article  ADS  Google Scholar 

  96. A. M. Ankowski, and O. Benhar, Phys. Rev. D 88, 093004 (2013), arXiv: 1305.2068.

    Article  ADS  Google Scholar 

  97. O. Benhar, D. Day, and I. Sick, Rev. Mod. Phys. 80, 189 (2008), arXiv: nucl-ex/0603029.

    Article  ADS  Google Scholar 

  98. W. F. McDonough, Treatise on Geochemistry, In: H. D. Holland, and K. K. Turekian, eds. (Pergamon, Oxford, 2003), pp. 547–568.

  99. J. Lundberg, and J. Edsjö, Phys. Rev. D 69, 123505 (2004), arXiv: astro-ph/0401113.

    Article  ADS  Google Scholar 

  100. V. Gluscevic, and K. K. Boddy, Phys. Rev. Lett. 121, 081301 (2018), arXiv: 1712.07133.

    Article  ADS  Google Scholar 

  101. W. L. Xu, C. Dvorkin, and A. Chael, Phys. Rev. D 97, 103530 (2018), arXiv: 1802.06788.

    Article  ADS  Google Scholar 

  102. J. Ooba, H. Tashiro, and K. Kadota, J. Cosmol. Astropart. Phys. 2019(09), 020 (2019), arXiv: 1902.00826.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangliang Su, Lei Wu or Bin Zhu.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12275134, 12275232, and 12335005). We are grateful to Artur M. Ankowski for a useful discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, L., Wu, L. & Zhu, B. An improved bound on accelerated light dark matter. Sci. China Phys. Mech. Astron. 67, 221012 (2024). https://doi.org/10.1007/s11433-023-2244-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2244-7

Navigation