Skip to main content
Log in

Quantum phase transition of the Jaynes-Cummings model

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Herein, we propose an experimentally feasible scheme to show the quantum phase transition of the Jaynes-Cummings (JC) model by modulating the transition frequency of a two-level system in a quantum Rabi model with strong coupling. By tuning the modulation frequency and amplitude, the ratio of the effective coupling strength of the rotating terms to the effective cavity (atomic transition) frequency can enter the deep-strong coupling regime, while the counter-rotating terms can be neglected. Thus, a deep-strong JC model is obtained. The ratio of the coupling strength to resonance frequencies in the deep-strong JC model is two orders of magnitude larger than the corresponding ratio in the original quantum Rabi model. Our scheme can be employed in atom-cavity resonance and off-resonance cases, and it is valid over a broad range. The nonzero average cavity photons of the ground state indicate the emergence of a quantum phase transition. Further, we demonstrate the dependence of the phase diagram on the atom-cavity detuning and modulation parameters. All the parameters used in our scheme are within the reach of current experimental technology. Our scheme provides a new mechanism for investigating the critical phenomena of finite-sized systems without requiring classical field limits, thereby opening a door for studying fundamental quantum phenomena occurring in the ultrastrong and even deep-strong coupling regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 2011).

    Book  Google Scholar 

  2. M. J. Hwang, and M. B. Plenio, Phys. Rev. Lett. 117, 123602 (2016).

    Article  ADS  PubMed  Google Scholar 

  3. R. H. Dicke, Phys. Rev. 93, 99 (1954).

    Article  ADS  CAS  Google Scholar 

  4. Y. K. Wang, and F. T. Hioe, Phys. Rev. A 7, 831 (1973).

    Article  ADS  CAS  Google Scholar 

  5. K. Hepp, and E. H. Lieb, Ann. Phys. 76, 360 (1973).

    Article  ADS  CAS  Google Scholar 

  6. J. F. Huang, Y. Li, J. Q. Liao, L. M. Kuang, and C. P. Sun, Phys. Rev. A 80, 063829 (2009).

    Article  ADS  Google Scholar 

  7. K. Baumann, R. Mottl, F. Brennecke, and T. Esslinger, Phys. Rev. Lett. 107, 140402 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. V. M. Bastidas, C. Emary, B. Regler, and T. Brandes, Phys. Rev. Lett. 108, 043003 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. J. Klinder, H. Keßler, M. Wolke, L. Mathey, and A. Hemmerich, Proc. Natl. Acad. Sci. USA 112, 3290 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. J. A. Muniz, D. Barberena, R. J. Lewis-Swan, D. J. Young, J. R. K. Cline, A. M. Rey, and J. K. Thompson, Nature 580, 602 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. J. F. Huang, and L. Tian, Phys. Rev. A 107, 063713 (2023).

    Article  ADS  CAS  Google Scholar 

  12. A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, Nat. Phys. 2, 856 (2006).

    Article  CAS  Google Scholar 

  13. M. Schiró, M. Bordyuh, B. Öztop, and H. E. Türeci, Phys. Rev. Lett. 109, 053601 (2012).

    Article  ADS  PubMed  Google Scholar 

  14. J. Xue, K. Seo, L. Tian, and T. Xiang, Phys. Rev. B 96, 174502 (2017).

    Article  ADS  Google Scholar 

  15. S. Felicetti, and A. Le Boité, Phys. Rev. Lett. 124, 040404 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. S. Ashhab, Phys. Rev. A 87, 013826 (2013).

    Article  ADS  Google Scholar 

  17. M. J. Hwang, R. Puebla, and M. B. Plenio, Phys. Rev. Lett. 115, 180404 (2015).

    Article  ADS  PubMed  Google Scholar 

  18. X. Chen, Z. Wu, M. Jiang, X. Y. Lü, X. Peng, and J. Du, Nat. Commun. 12, 6281 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. M. L. Cai, Z. D. Liu, W. D. Zhao, Y. K. Wu, Q. X. Mei, Y. Jiang, L. He, X. Zhang, Z. C. Zhou, and L. M. Duan, Nat. Commun. 12, 1126 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Y. Y. Zhang, Z. X. Hu, L. Fu, H. G. Luo, H. Pu, and X. F. Zhang, Phys. Rev. Lett. 127, 063602 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. D. Fallas Padilla, H. Pu, G. J. Cheng, and Y. Y. Zhang, Phys. Rev. Lett. 129, 183602 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. M. Liu, S. Chesi, Z. J. Ying, X. Chen, H. G. Luo, and H. Q. Lin, Phys. Rev. Lett. 119, 220601 (2017).

    Article  ADS  PubMed  Google Scholar 

  23. E. T. Jaynes, and F. W. Cummings, Proc. IEEE 51, 89 (1963).

    Article  Google Scholar 

  24. J. F. Huang, J. Q. Liao, and L. M. Kuang, Phys. Rev. A 101, 043835 (2020).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  25. M. D. Crisp, Phys. Rev. A 43, 2430 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and K. Semba, Nat. Phys. 13, 44 (2017).

    Article  CAS  Google Scholar 

  27. A. Bayer, M. Pozimski, S. Schambeck, D. Schuh, R. Huber, D. Bougeard, and C. Lange, Nano Lett. 17, 6340 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. I. I. Rabi, Phys. Rev. 49, 324 (1936).

    Article  ADS  CAS  Google Scholar 

  29. I. I. Rabi, Phys. Rev. 51, 652 (1937).

    Article  ADS  CAS  Google Scholar 

  30. C. Liu, J. F. Huang, and L. Tian, Sci. China-Phys. Mech. Astron. 66, 220311 (2023).

    Article  ADS  Google Scholar 

  31. M. O. Scully, and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).

    Book  Google Scholar 

  32. J. F. Huang, J. Q. Liao, L. Tian, and L. M. Kuang, Phys. Rev. A 96, 043849 (2017).

    Article  ADS  Google Scholar 

  33. R. H. Zheng, W. Ning, Y. H. Chen, J. H. Lü, L. T. Shen, K. Xu, Y. R. Zhang, D. Xu, H. Li, Y. Xia, F. Wu, Z. B. Yang, A. Miranowicz, N. Lambert, D. Zheng, H. Fan, F. Nori, and S. B. Zheng, Phys. Rev. Lett. 131, 113601 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature 431, 162 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. I. Chiorescu, P. Bertet, K. Semba, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, Nature 431, 159 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. J. Johansson, S. Saito, T. Meno, H. Nakano, M. Ueda, K. Semba, and H. Takayanagi, Phys. Rev. Lett. 96, 127006 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. A. Fedorov, A. K. Feofanov, P. Macha, P. Forn-Díaz, C. J. P. M. Harmans, and J. E. Mooij, Phys. Rev. Lett. 105, 060503 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. J. Li, M. P. Silveri, K. S. Kumar, J. M. Pirkkalainen, A. Vepsäläinen, W. C. Chien, J. Tuorila, M. A. Sillanpää, P. J. Hakonen, E. V. Thuneberg, and G. S. Paraoanu, Nat. Commun. 4, 1420 (2013).

    Article  ADS  PubMed  Google Scholar 

  39. S. J. Bosman, M. F. Gely, V. Singh, D. Bothner, A. Castellanos-Gomez, and G. A. Steele, Phys. Rev. B 95, 224515 (2017).

    Article  ADS  Google Scholar 

  40. P. Forn-Díaz, L. Lamata, E. Rico, J. Kono, and E. Solano, Rev. Mod. Phys. 91, 025005 (2019).

    Article  ADS  Google Scholar 

  41. A. Blais, A. L. Grimsmo, S. Girvin, and A. Wallraff, Rev. Mod. Phys. 93, 025005 (2021).

    Article  ADS  CAS  Google Scholar 

  42. D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 76, 1796 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod. Phys. 75, 281 (2003).

    Article  ADS  CAS  Google Scholar 

  44. D. Lv, S. An, M. Um, J. Zhang, J. N. Zhang, M. S. Kim, and K. Kim, Phys. Rev. A 95, 043813 (2017).

    Article  ADS  Google Scholar 

  45. D. Lv, S. An, Z. Liu, J. N. Zhang, J. S. Pedernales, L. Lamata, E. Solano, and K. Kim, Phys. Rev. X 8, 021027 (2018).

    Google Scholar 

  46. H. J. Kimble, Phys. Script. T76, 127 (1998).

    Article  ADS  CAS  Google Scholar 

  47. M. J. Hwang, P. Rabl, and M. B. Plenio, Phys. Rev. A 97, 013825 (2018).

    Article  ADS  CAS  Google Scholar 

  48. M. Soriente, T. Donner, R. Chitra, and O. Zilberberg, Phys. Rev. Lett. 120, 183603 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. G. De Filippis, A. de Candia, G. Di Bello, C. Perroni, L. Cangemi, A. Nocera, M. Sassetti, R. Fazio, and V. Cataudella, Phys. Rev. Lett. 130, 210404 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Feng Huang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

J.-F. Huang was supported by the National Natural Science Foundation of China (Grant No. 12075083). We would like to thank Jie-Qiao Liao for helpful discussions during the reply to the referees’ reports.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Huang, JF. Quantum phase transition of the Jaynes-Cummings model. Sci. China Phys. Mech. Astron. 67, 210311 (2024). https://doi.org/10.1007/s11433-023-2243-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2243-7

Navigation