Skip to main content
Log in

Theoretical understanding of correlation between magnetic phase transition and the superconducting dome in high-Tc cuprates

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Many issues concerning the origin of high-temperature superconductivity (HTS) are still under debate. For example, how the magnetic order varies with doping and its relationship with the superconducting temperature (Tc); and why Tc always peaks near the quantum critical point. In this paper, taking hole-doped La2CuO4 as a classical example, we employ the first-principles band structure and total energy calculations with Monte Carlo simulations to explore how the symmetry-breaking magnetic ground state evolves with hole doping and the origin of a dome-shaped superconductivity region in the phase diagram. We demonstrate that the local antiferromagnetic order and doping play key roles in determining the electron-phonon coupling, thus Tc. Initially, the La2CuO4 possesses a checkerboard local antiferromagnetic ground state. As the hole doping increases, Tc increases with the enhanced electron-phonon coupling strength. But as the doping increases further, the strength of the antiferromagnetic interaction weakens and spin fluctuation increases. At the critical doping level, a magnetic phase transition occurs that reduces the local antiferromagnetism-assisted electron-phonon coupling, thus diminishing the Tc. The superconductivity disappears in the heavily overdoped region when the ferromagnetic order dominates. These observations could account for why cuprates have a dome-shaped superconductivity region in the phase diagram. Our study, thus, contributes to a fundamental understanding of the correlation between doping, local magnetic order, and superconductivity of HTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. N. Singh, Physica C-Supercond. Appl. 580, 1353782 (2021).

    Article  ADS  Google Scholar 

  2. C. C. Tsuei, and J. R. Kirtley, Rev. Mod. Phys. 72, 969 (2000).

    Article  ADS  Google Scholar 

  3. H. Ding, T. Yokoya, J. C. Campuzano, T. Takahashi, M. Randeria, M. R. Norman, T. Mochiku, K. Kadowaki, and J. Giapintzakis, Nature 382, 51 (1996).

    Article  ADS  Google Scholar 

  4. C. M. Varma, Rev. Mod. Phys. 92, 031001 (2020).

    Article  ADS  Google Scholar 

  5. S. Wakimoto, H. Zhang, K. Yamada, I. Swainson, H. Kim, and R. J. Birgeneau, Phys. Rev. Lett. 92, 217004 (2004).

    Article  ADS  Google Scholar 

  6. K. Terashima, H. Matsui, D. Hashimoto, T. Sato, T. Takahashi, H. Ding, T. Yamamoto, and K. Kadowaki, Nat. Phys. 2, 27 (2005).

    Article  Google Scholar 

  7. R. Ofer, G. Bazalitsky, A. Kanigel, A. Keren, A. Auerbach, J. S. Lord, and A. Amato, Phys. Rev. B 74, 220508 (2006).

    Article  ADS  Google Scholar 

  8. M. Julien, Phys. B 329–333, 693 (2003).

    Article  ADS  Google Scholar 

  9. C. Panagopoulos, J. L. Tallon, B. D. Rainford, J. R. Cooper, C. A. Scott, and T. Xiang, Solid State Commun. 126, 47 (2003).

    Article  ADS  Google Scholar 

  10. M. Frachet, I. Vinograd, R. Zhou, S. Benhabib, S. Wu, H. Mayaffre, S. Krämer, S. K. Ramakrishna, A. P. Reyes, J. Debray, T. Kurosawa, N. Momono, M. Oda, S. Komiya, S. Ono, M. Horio, J. Chang, C. Proust, D. LeBoeuf, and M. H. Julien, Nat. Phys. 16, 1064 (2020).

    Article  Google Scholar 

  11. D. M. Broun, Nat. Phys. 4, 170 (2008).

    Article  Google Scholar 

  12. C. Proust, and L. Taillefer, Annu. Rev. Condens. Matter Phys. 10, 409 (2019).

    Article  ADS  Google Scholar 

  13. B. Michon, C. Girod, S. Badoux, J. Kačmarčík, Q. Ma, M. Dragomir, H. A. Dabkowska, B. D. Gaulin, J. S. Zhou, S. Pyon, T. Takayama, H. Takagi, S. Verret, N. Doiron-Leyraud, C. Marcenat, L. Taillefer, and T. Klein, Nature 567, 218 (2019).

    Article  ADS  Google Scholar 

  14. S. Badoux, W. Tabis, F. Laliberté, G. Grissonnanche, B. Vignolle, D. Vignolles, J. Béard, D. A. Bonn, W. N. Hardy, R. Liang, N. Doiron-Leyraud, L. Taillefer, and C. Proust, Nature 531, 210 (2016).

    Article  ADS  Google Scholar 

  15. S. Benhabib, A. Sacuto, M. Civelli, I. Paul, M. Cazayous, Y. Gallais, M. A. Méasson, R. D. Zhong, J. Schneeloch, G. D. Gu, D. Colson, and A. Forget, Phys. Rev. Lett. 114, 147001 (2015).

    Article  ADS  Google Scholar 

  16. R. A. Cooper, Y. Wang, B. Vignolle, O. J. Lipscombe, S. M. Hayden, Y. Tanabe, T. Adachi, Y. Koike, M. Nohara, H. Takagi, C. Proust, and N. E. Hussey, Science 323, 603 (2009).

    Article  ADS  Google Scholar 

  17. X. Li, C. Zou, Y. Ding, H. Yan, S. Ye, H. Li, Z. Hao, L. Zhao, X. Zhou, and Y. Wang, Phys. Rev. X 11, 011007 (2021).

    Google Scholar 

  18. S. Nakamura, T. Moriya, and K. Ueda, J. Phys. Soc. Jpn. 65, 4026 (1996).

    Article  ADS  Google Scholar 

  19. T. Moriya, and K. Ueda, Rep. Prog. Phys. 66, 1299 (2003).

    Article  ADS  Google Scholar 

  20. D. J. Scalapino, Phys. Rep. 250, 329 (1995).

    Article  ADS  Google Scholar 

  21. T. Moriya, Y. Takahashi, and K. Ueda, J. Phys. Soc. Jpn. 59, 2905 (1990).

    Article  ADS  Google Scholar 

  22. G. J. MacDougall, A. T. Savici, A. A. Aczel, R. J. Birgeneau, H. Kim, S. J. Kim, T. Ito, J. A. Rodriguez, P. L. Russo, Y. J. Uemura, S. Wakimoto, C. R. Wiebe, and G. M. Luke, Phys. Rev. B 81, 014508 (2010).

    Article  ADS  Google Scholar 

  23. M. Oda, T. Nakano, Y. Kamada, and M. Ido, Phys. C-Supercond. 183, 234 (1991).

    Article  ADS  Google Scholar 

  24. T. Nakano, M. Oda, C. Manabe, N. Momono, Y. Miura, and M. Ido, Phys. Rev. B 49, 16000 (1994).

    Article  ADS  Google Scholar 

  25. Y. Zhang, C. Lane, J. W. Furness, B. Barbiellini, J. P. Perdew, R. S. Markiewicz, A. Bansil, and J. Sun, Proc. Natl. Acad. Sci. USA 117, 68 (2020).

    Article  ADS  Google Scholar 

  26. Q. Ma, K. C. Rule, Z. W. Cronkwright, M. Dragomir, G. Mitchell, E. M. Smith, S. Chi, A. I. Kolesnikov, M. B. Stone, and B. D. Gaulin, Phys. Rev. Res. 3, 023151 (2021).

    Article  Google Scholar 

  27. A. Kopp, A. Ghosal, and S. Chakravarty, Proc. Natl. Acad. Sci. USA 104, 6123 (2007).

    Article  ADS  Google Scholar 

  28. K. Kurashima, T. Adachi, K. M. Suzuki, Y. Fukunaga, T. Kawamata, T. Noji, and Y. Koike, J. Phys.-Conf. Ser. 568, 022003 (2014).

    Article  Google Scholar 

  29. T. Sarkar, D. S. Wei, J. Zhang, N. R. Poniatowski, P. R. Mandal, A. Kapitulnik, and R. L. Greene, Science 368, 532 (2020).

    Article  ADS  Google Scholar 

  30. G. M. Dalpian, S. H. Wei, X. G. Gong, A. J. R. da Silva, and A. Fazzio, Solid State Commun. 138, 353 (2006).

    Article  ADS  Google Scholar 

  31. G. Kresse, and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  32. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  33. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  34. T. C. Sterling, and D. Reznik, Phys. Rev. B 104, 134311 (2021).

    Article  ADS  Google Scholar 

  35. Z. Shen, J. W. Allen, J. J. Yeh, J. S. Kang, W. Ellis, W. Spicer, I. Lindau, M. B. Maple, Y. D. Dalichaouch, M. S. Torikachvili, J. Z. Sun, and T. H. Geballe, Phys. Rev. B 36, 8414 (1987).

    Article  ADS  Google Scholar 

  36. A. Fujimori, E. Takayama-Muromachi, Y. Uchida, and B. Okai, Phys. Rev. B 35, 8814 (1987).

    Article  ADS  Google Scholar 

  37. F. Giustino, M. L. Cohen, and S. G. Louie, Nature 452, 975 (2008).

    Article  ADS  Google Scholar 

  38. M. Y. Lavrentiev, D. Nguyen-Manh, and S. L. Dudarev, Phys. Rev. B 81, 184202 (2010).

    Article  ADS  Google Scholar 

  39. E. Cockayne, I. Levin, H. Wu, and A. Llobet, Phys. Rev. B 87, 184413 (2013).

    Article  ADS  Google Scholar 

  40. A. Walle, and G. Ceder, J. Phase Equilib. 23, 348 (2002).

    Article  Google Scholar 

  41. A. H. MacDonald, S. M. Girvin, and D. Yoshioka, Phys. Rev. B 37, 9753 (1988).

    Article  ADS  Google Scholar 

  42. M. Hoffmann, and S. Blügel, Phys. Rev. B 101, 024418 (2020).

    Article  ADS  Google Scholar 

  43. J. Hu, Sci. Bull. 61, 561 (2016).

    Article  Google Scholar 

  44. K. Yamada, E. Kudo, Y. Endoh, Y. Hidaka, M. Oda, M. Suzuki, and T. Murakami, Solid State Commun. 64, 753 (1987).

    Article  ADS  Google Scholar 

  45. R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perring, C. D. Frost, T. E. Mason, S. W. Cheong, and Z. Fisk, Phys. Rev. Lett. 86, 5377 (2001).

    Article  ADS  Google Scholar 

  46. S. H. Wei, L. G. Ferreira, and A. Zunger, Phys. Rev. B 41, 8240 (1990).

    Article  ADS  Google Scholar 

  47. F. S. Khan, and P. B. Allen, Phys. Rev. B 29, 3341 (1984).

    Article  ADS  Google Scholar 

  48. Z. X. Shen, and J. R. Schrieffer, Phys. Rev. Lett. 78, 1771 (1997).

    Article  ADS  Google Scholar 

  49. T. Yildirim, O. Gülseren, J. W. Lynn, C. M. Brown, T. J. Udovic, Q. Huang, N. Rogado, K. A. Regan, M. A. Hayward, J. S. Slusky, T. He, M. K. Haas, P. Khalifah, K. Inumaru, and R. J. Cava, Phys. Rev. Lett. 87, 037001 (2001).

    Article  ADS  Google Scholar 

  50. C. Z. Wang, R. Yu, and H. Krakauer, Phys. Rev. B 59, 9278 (1999).

    Article  ADS  Google Scholar 

  51. S. L. Chaplot, W. Reichardt, L. Pintschovius, and N. Pyka, Phys. Rev. B 52, 7230 (1995).

    Article  ADS  Google Scholar 

  52. S. Y. Savrasov, and O. K. Andersen, Phys. Rev. Lett. 77, 4430 (1996).

    Article  ADS  Google Scholar 

  53. K. P. Bohnen, R. Heid, and M. Krauss, Europhys. Lett. 64, 104 (2003).

    Article  ADS  Google Scholar 

  54. R. Heid, K. P. Bohnen, R. Zeyher, and D. Manske, Phys. Rev. Lett. 100, 137001 (2008).

    Article  ADS  Google Scholar 

  55. Y. He, M. Hashimoto, D. Song, S. D. Chen, J. He, I. M. Vishik, B. Moritz, D. H. Lee, N. Nagaosa, J. Zaanen, T. P. Devereaux, Y. Yoshida, H. Eisaki, D. H. Lu, and Z. X. Shen, Science 362, 62 (2018).

    Article  ADS  Google Scholar 

  56. P. B. Allen, and R. C. Dynes, Phys. Rev. B 12, 905 (1975).

    Article  ADS  Google Scholar 

  57. E. E. M. Chia, D. Springer, S. K. Nair, X. Q. Zou, S. A. Cheong, C. Panagopoulos, T. Tamegai, H. Eisaki, S. Ishida, S. Uchida, A. J. Taylor, and J. X. Zhu, New J. Phys. 15, 103027 (2013).

    Article  ADS  Google Scholar 

  58. G. Shirane, R. J. Birgeneau, Y. Endoh, and M. A. Kastner, Phys. B 197, 158 (1994).

    Article  ADS  Google Scholar 

  59. K. Yang, H. Yang, Y. Sun, Z. Wei, J. Zhang, P. H. Tan, J. W. Luo, S. S. Li, S. H. Wei, and H. X. Deng, Sci. China-Phys. Mech. Astron. 66, 277311 (2023).

    Article  ADS  Google Scholar 

  60. T. Dahm, V. Hinkov, S. V. Borisenko, A. A. Kordyuk, V. B. Zabolotnyy, J. Fink, B. Büchner, D. J. Scalapino, W. Hanke, and B. Keimer, Nat. Phys. 5, 217 (2009).

    Article  Google Scholar 

  61. M. Le Tacon, G. Ghiringhelli, J. Chaloupka, M. M. Sala, V. Hinkov, M. W. Haverkort, M. Minola, M. Bakr, K. J. Zhou, S. Blanco-Canosa, C. Monney, Y. T. Song, G. L. Sun, C. T. Lin, G. M. De Luca, M. Salluzzo, G. Khaliullin, T. Schmitt, L. Braicovich, and B. Keimer, Nat. Phys. 7, 725 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Su-Huai Wei, Haiqing Lin or Hui-Xiong Deng.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61922077, 11874347, 11991060, 12088101, 61927901, and U2230402), the National Key Research and Development Program of China (Grant Nos. 2018YFB2200100, and 2020YFB1506400), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0460000), and the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-026). Hui-Xiong Deng was also supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. Y2021042).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

11433_2023_2240_MOESM1_ESM.pdf

Theoretical understanding of correlation between magnetic phase transition and the superconducting dome in high-Tc cuprates

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, CX., Wei, SH. et al. Theoretical understanding of correlation between magnetic phase transition and the superconducting dome in high-Tc cuprates. Sci. China Phys. Mech. Astron. 67, 227412 (2024). https://doi.org/10.1007/s11433-023-2240-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2240-0

Navigation