Skip to main content
Log in

Single-step-etched ultra-compact metamaterial grating coupler enabled by a hierarchical inverse design approach

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

With the concept of metamaterials introduced into integrated photonics, subwavelength structures have gained popularity for their ability to create devices with ultra-compact size, high performance, and versatile functionalities. However, traditional metamaterial design methods are usually based on empirical templates and physical approximations, lacking the ability to design free-form metamaterial structures and optimize entire devices globally. In this work, we propose a hierarchical inverse design approach that combines a conventional effective refractive index based metamaterial structures design with a follow-up global topology optimization. The empirical metamaterial grating coupler design based on effective refractive index engineering faces inaccurate index extraction and insufficient approximation of wavevector matching conditions, which deteriorates coupling efficiency, especially for fully-etched devices with the decreased tapering region. Fortunately, a subsequent overall topology optimization step can well compensate for the negative effect of the shrinking device footprint to increase the efficiency of the metamaterial grating coupler. We demonstrate a 23 μm×10 μm ultra-compact metamaterial grating coupler with single-step-etched to couple light between a fiber and a 500 nm single-mode silicon waveguide in the O-band. Experimental measurement shows an insertion loss of 3.17 dB and a 3 dB bandwidth of 77 nm, making it the smallest footprint device ever reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Xia, L. Sekaric, and Y. A. Vlasov, Opt. Express 14, 3872 (2006).

    Article  ADS  Google Scholar 

  2. J. Wang, Y. Shi, T. Hughes, Z. Zhao, and S. Fan, Opt. Express 26, 3236 (2018).

    Article  ADS  Google Scholar 

  3. A. He, X. Guo, T. Wang, and Y. Su, ACS Photon. 8, 3226 (2021).

    Article  Google Scholar 

  4. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, Jpn. J. Appl. Phys. 45, 6071 (2006).

    Article  ADS  Google Scholar 

  5. C. H. Chen, and C. H. Chiu, IEEE J. Quantum Electron. 46, 1656 (2010).

    Article  ADS  Google Scholar 

  6. Wu J, Shi B, Kong M. Chin. Opt. Lett. 4, 167 (2006).

    ADS  Google Scholar 

  7. W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, Opt. Lett. 32, 2801 (2007).

    Article  ADS  Google Scholar 

  8. A. Bozzola, L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, Opt. Express 23, 16289 (2015).

    Article  ADS  Google Scholar 

  9. J. Hoffmann, K. M. Schulz, G. Pitruzzello, L. S. Fohrmann, A. Y. Petrov, and M. Eich, Sci. Rep. 8, 17746 (2018).

    Article  ADS  Google Scholar 

  10. Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, Opt. Express 22, 20652 (2014).

    Article  ADS  Google Scholar 

  11. S. Li, L. Cai, D. Gao, J. Dong, J. Hou, C. Yang, S. Chen, and X. Zhang, Opt. Express 28, 35395 (2020).

    Article  ADS  Google Scholar 

  12. Y. Yang, J. Seong, M. Choi, J. Park, G. Kim, H. Kim, J. Jeong, C. Jung, J. Kim, G. Jeon, K. Lee, D. H. Yoon, and J. Rho, Light Sci. Appl. 12, 152 (2023).

    Article  ADS  Google Scholar 

  13. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, Opt. Express 16, 7181 (2008).

    Article  ADS  Google Scholar 

  14. S. Chen, W. Liu, Z. Li, H. Cheng, and J. Tian, Metamater.-Dev. Appl. https://doi.org/10.5772/66036 (2017).

  15. A. K. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, ACS Photon. 1, 833 (2014).

    Article  Google Scholar 

  16. Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk’yanchuk, and A. I. Kuznetsov, Laser Photon. Rev. 9, 412 (2015).

    Article  ADS  Google Scholar 

  17. Y. Shi, C. Wan, C. Dai, Z. Wang, S. Wan, G. Zheng, S. Zhang, and Z. Li, Laser Photon. Rev. 16, 202100638 (2022).

    ADS  Google Scholar 

  18. L. Li, K. Yao, Z. Wang, and Y. Liu, Laser Photon. Rev. 14, 201900244 (2020).

    ADS  Google Scholar 

  19. X. Guo, Y. Ding, X. Chen, Y. Duan, and X. Ni, Sci. Adv. 6, eabb4142 (2020).

    Article  ADS  Google Scholar 

  20. Y. Meng, Y. Chen, L. Lu, Y. Ding, A. Cusano, J. A. Fan, Q. Hu, K. Wang, Z. Xie, Z. Liu, Y. Yang, Q. Liu, M. Gong, Q. Xiao, S. Sun, M. Zhang, X. Yuan, and X. Ni, Light Sci. Appl. 10, 235 (2021).

    Article  ADS  Google Scholar 

  21. P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater, and D. R. Smith, Nature 560, 565 (2018).

    Article  ADS  Google Scholar 

  22. Z. Wang, T. Li, A. Soman, D. Mao, T. Kananen, and T. Gu, Nat. Commun. 10, 3547 (2019).

    Article  ADS  Google Scholar 

  23. J. M. Luque-González, A. Herrero-Bermello, A. Ortega-Moñux, Í. Molina-Fernández, A. V. Velasco, P. Cheben, J. H. Schmid, S. Wang, and R. Halir, Opt. Lett. 43, 4691 (2018).

    Article  ADS  Google Scholar 

  24. X. Mu, S. Wu, L. Cheng, and H. Y. Fu, Appl. Sci. 10, 1538 (2020).

    Article  Google Scholar 

  25. Z. Guo, and J. Xiao, Opt. Commun. 488, 126850 (2021).

    Article  Google Scholar 

  26. L. Deng, Y. Xu, R. Jin, Z. Cai, and Y. Liu, Adv. Opt. Mater. 10, 2200910 (2022).

    Article  Google Scholar 

  27. W. Jiang, J. Hu, S. Mao, J. Feng, X. Hao, and Y. Zhang, Appl. Opt. 60, 1164 (2021).

    Article  ADS  Google Scholar 

  28. W. Jiang, and S. Xu, J. Phys. D-Appl. Phys. 54, 505101 (2021).

    Article  ADS  Google Scholar 

  29. X. Chen, and H. K. Tsang, IEEE Photon. J. 1, 184 (2009).

    Article  ADS  Google Scholar 

  30. N. Chen, B. Dong, X. Luo, H. Wang, N. Singh, G. Q. Lo, and C. Lee, Opt. Express 26, 26242 (2018).

    Article  ADS  Google Scholar 

  31. R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D. X. Xu, A. Densmore, J. Lapointe, and Í. Molina-Fernández, Opt. Lett. 35, 3243 (2010).

    Article  ADS  Google Scholar 

  32. D. Benedikovic, P. Cheben, J. H. Schmid, D. Xu, J. Lapointe, S. Wang, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, Laser Photon. Rev. 8, 201400113 (2014).

    Article  Google Scholar 

  33. J. Xu, X. Jin, and Y. Zhao, Opt. Quant. Elec. 49, 158 (2017).

    Article  Google Scholar 

  34. S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, Nat. Photon. 12, 659 (2018).

    Article  ADS  Google Scholar 

  35. Y. Augenstein, and C. Rockstuhl, ACS Photon. 7, 2190 (2020).

    Article  Google Scholar 

  36. Z. A. Kudyshev, V. M. Shalaev, and A. Boltasseva, ACS Photon. 8, 34 (2021).

    Article  Google Scholar 

  37. L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vučković, ACS Photon. 5, 301 (2018).

    Article  Google Scholar 

  38. H. Jia, T. Zhou, X. Fu, J. Ding, and L. Yang, ACS Photon. 5, 1833 (2018).

    Article  Google Scholar 

  39. B. Shen, P. Wang, R. Polson, and R. Menon, Nat. Photon. 9, 378 (2015).

    Article  ADS  Google Scholar 

  40. G. H. Ahn, K. Y. Yang, R. Trivedi, A. D. White, L. Su, J. Skarda, and J. Vučković, ACS Photon. 9, 1875 (2022).

    Article  Google Scholar 

  41. S. So, J. Mun, and J. Rho, ACS Appl. Mater. Interfaces 11, 24264 (2019).

    Article  Google Scholar 

  42. S. So, D. Lee, T. Badloe, and J. Rho, Opt. Mater. Express 11, 1863 (2021).

    Article  ADS  Google Scholar 

  43. S. So, J. Mun, J. Park, and J. Rho, Adv. Mater. 35, 206399 (2023).

    Google Scholar 

  44. C. Q. Lu, C. Q. Xiao, C. C. Liu, C. Y. Wang, C. Q. Zhu, C. M. Xu, C. X. Wang, C. X. Wang, and C. W. Huang, Opto-Elec. Adv. 6, 220018 (2023).

    Article  Google Scholar 

  45. Y. Ha, Y. Guo, M. Pu, M. Xu, X. Li, X. Ma, F. Zou, and X. Luo, Nanomaterials 12, 3395 (2022).

    Article  Google Scholar 

  46. W. Ma, M. Hou, R. Luo, B. Xiong, N. Liu, G. Liu, and T. Chu, Nanophotonics 12, 1189 (2023).

    Article  Google Scholar 

  47. Y. Ha, L. Wang, Y. Guo, M. Pu, F. Zou, X. Li, Y. Fan, X. Ma, and X. Luo, Light Adv. Manufact. 4, 20 (2023).

    Article  Google Scholar 

  48. R. Halir, P. Cheben, S. Janz, D. X. Xu, Í. Molina-Fernández, and J. G. Wangüemert-Pérez, Opt. Lett. 34, 1408 (2009).

    Article  ADS  Google Scholar 

  49. R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, ÍI. Molina-Fernández, and S. Janz, Laser Photon. Rev. 9, 25 (2015).

    Article  ADS  Google Scholar 

  50. S. So, J. Kim, T. Badloe, C. Lee, Y. Yang, H. Kang, and J. Rho, Adv. Mater. 35, e2208520 (2023).

    Article  Google Scholar 

  51. A. Y. Piggott, J. Petykiewicz, L. Su, and J. Vučković, Sci. Rep. 7, 1786 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ma.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Key Research and Development Program of China (GrantNo. 2021YFA1401200), and the National Natural Science Foundation of China (Grant Nos. 62322511, 62105285, and 62275230).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Luo, R., Liu, N. et al. Single-step-etched ultra-compact metamaterial grating coupler enabled by a hierarchical inverse design approach. Sci. China Phys. Mech. Astron. 67, 224211 (2024). https://doi.org/10.1007/s11433-023-2236-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2236-3

Navigation