Skip to main content
Log in

Facile intercalation of alkali ions in WO3 for modulated electronic and optical properties: Implications for artificial synapses and chromogenic application

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Tungsten oxides (WO3) are widely recognized as multifunctional systems owing to the existence of rich polymorphs. These diverse phases exhibit distinct octahedra-tilting patterns, generating substantial tunnels that are ideally suited for iontronics. However, a quantitative comprehension regarding the impact of distinct phases on the kinetics of intercalated conducting ions remains lacking. Herein, we employ first-principles calculations to explore the spatial and orientational correlations of ion transport in γ- and h-WO3, shedding light on the relationship between diffusion barriers and the size of the conducting ions. Our findings reveal that different types and concentrations of alkali-metals induce distinct and continuous lattice distortions in WO3 polymorphs. Specifically, γ-WO3 is more appropriate to accommodate Li+ ions, exhibiting a diffusion barrier and coefficient of 0.25 eV and 9.31×108 cm2 s1, respectively. Conversely, h-WO3 features unidirectional and sizeable tunnels that facilitate the transport of K+ ions with an even lower barrier and a high coefficient of 0.11 eV and 2.12×105 cm2 s1, respectively. Furthermore, the introduction of alkali-metal into WO3 tunnels tends to introduce n-type conductivity by contributing s-electrons to the unoccupied W 5d states, resulting in enhanced conductivity and tunable electronic structures. These alkali metals in WO3 tunnels are prone to charge transfer, forming small polaronic states and modulating the light absorption in the visible and near-infrared regions. These tunable electronic and optical properties, combined with the high diffusion coefficient, underscore the potential of WO3 in applications such as artificial synapses and chromogenic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Cheema, N. Shanker, L. C. Wang, C. H. Hsu, S. L. Hsu, Y. H. Liao, M. San Jose, J. Gomez, W. Chakraborty, W. Li, J. H. Bae, S. K. Volkman, D. Kwon, Y. Rho, G. Pinelli, R. Rastogi, D. Pipitone, C. Stull, M. Cook, B. Tyrrell, V. A. Stoica, Z. Zhang, J. W. Freeland, C. J. Tassone, A. Mehta, G. Saheli, D. Thompson, D. I. Suh, W. T. Koo, K. J. Nam, D. J. Jung, W. B. Song, C. H. Lin, S. Nam, J. Heo, N. Parihar, C. P. Grigoropoulos, P. Shafer, P. Fay, R. Ramesh, S. Mahapatra, J. Ciston, S. Datta, M. Mohamed, C. Hu, and S. Salahuddin, Nature 604, 65 (2022).

    Article  ADS  Google Scholar 

  2. Q. Luo, Y. Cheng, J. Yang, R. Cao, H. Ma, Y. Yang, R. Huang, W. Wei, Y. Zheng, T. Gong, J. Yu, X. Xu, P. Yuan, X. Li, L. Tai, H. Yu, D. Shang, Q. Liu, B. Yu, Q. Ren, H. Lv, and M. Liu, Nat. Commun. 11, 1391 (2020).

    Article  ADS  Google Scholar 

  3. Z. Chen, J. Wang, H. Wu, J. Yang, Y. Wang, J. Zhang, Q. Bao, M. Wang, Z. Ma, W. Tress, and Z. Tang, Nat. Commun. 13, 4387 (2022).

    Article  ADS  Google Scholar 

  4. J. Mun, H. Kong, J. Lee, H. J. Lee, H. Yang, H. Y. Kim, S. W. Park, S. Ko, S. Hwang, J. Dho, and J. Yeo, Adv. Funct. Mater. 33, 2214950 (2023).

    Article  Google Scholar 

  5. X. Yang, Y. Deng, H. Yang, Y. Liao, X. Cheng, Y. Zou, L. Wu, and Y. Deng, Adv. Sci. 10, 2204810 (2023).

    Article  Google Scholar 

  6. L. Liccardo, M. Bordin, P. M. Sheverdyaeva, M. Belli, P. Moras, A. Vomiero, and E. Moretti, Adv. Funct. Mater. 33, 2212486 (2023).

    Article  Google Scholar 

  7. C. Huan, P. Wang, B. He, Y. Cai, and Q. Ke, J. Mater. Chem. C 10, 1839 (2022).

    Article  Google Scholar 

  8. H. A. Vignolo-González, A. Gouder, S. Laha, V. Duppel, S. Carretero-Palacios, A. Jiménez-Solano, T. Oshima, P. Schützendübe, and B. V. Lotsch, Adv. Energy Mater. 13, 2203315 (2023).

    Article  Google Scholar 

  9. Y. Zeng, Z. Tang, X. Wu, A. Huang, X. Luo, G. Q. Xu, Y. Zhu, and S. L. Wang, Appl. Catal. B-Environ. 306, 120919 (2022).

    Article  Google Scholar 

  10. Z. Shao, A. Huang, C. Ming, J. Bell, P. Yu, Y. Y. Sun, L. Jin, L. Ma, H. Luo, P. Jin, and X. Cao, Nat. Electron. 5, 45 (2022).

    Article  Google Scholar 

  11. Y. Huang, B. Wang, F. Chen, Y. Han, W. Zhang, X. Wu, R. Li, Q. Jiang, X. Jia, and R. Zhang, Adv. Opt. Mater. 10, 2101783 (2022).

    Article  Google Scholar 

  12. W. Zhang, H. Li, and A. Y. Elezzabi, Adv. Funct. Mater. 33, 2300155 (2023).

    Article  Google Scholar 

  13. Y. Zhang, J. Liang, Z. Huang, Q. Wang, G. Zhu, S. Dong, H. Liang, and X. Dong, Adv. Sci. 9, 2105158 (2022).

    Article  Google Scholar 

  14. K. Thummavichai, Y. Xia, and Y. Zhu, Prog. Mater. Sci. 88, 281 (2017).

    Article  Google Scholar 

  15. C. A. Triana, C. G. Granqvist, and G. A. Niklasson, J. Appl. Phys. 118, 024901 (2015).

    Article  ADS  Google Scholar 

  16. R. T. Wen, C. G. Granqvist, and G. A. Niklasson, Nat. Mater. 14, 996 (2015).

    Article  ADS  Google Scholar 

  17. Z. Hai, Z. Wei, C. Xue, H. Xu, and F. Verpoort, J. Mater. Chem. C 7, 12968 (2019).

    Article  Google Scholar 

  18. A. Sood, A. D. Poletayev, D. A. Cogswell, P. M. Csernica, J. T. Mefford, D. Fraggedakis, M. F. Toney, A. M. Lindenberg, M. Z. Bazant, and W. C. Chueh, Nat. Rev. Mater. 6, 847 (2021), arXiv: 2011.12991.

    Article  ADS  Google Scholar 

  19. T. Li, and K. Xiao, Adv. Mater. Technol. 7, 2200205 (2022).

    Article  Google Scholar 

  20. H. T. Zhang, T. J. Park, A. N. M. N. Islam, D. S. J. Tran, S. Manna, Q. Wang, S. Mondal, H. Yu, S. Banik, S. Cheng, H. Zhou, S. Gamage, S. Mahapatra, Y. Zhu, Y. Abate, N. Jiang, S. K. R. S. Sankaranarayanan, A. Sengupta, C. Teuscher, and S. Ramanathan, Science 375, 533 (2022).

    Article  ADS  Google Scholar 

  21. J. T. Yang, C. Ge, J. Y. Du, H. Y. Huang, M. He, C. Wang, H. B. Lu, G. Z. Yang, and K. J. Jin, Adv. Mater. 30, 1801548 (2018).

    Article  Google Scholar 

  22. X. Yao, K. Klyukin, W. Lu, M. Onen, S. Ryu, D. Kim, N. Emond, I. Waluyo, A. Hunt, J. A. del Alamo, J. Li, and B. Yildiz, Nat. Commun. 11, 3134 (2020).

    Article  ADS  Google Scholar 

  23. Q. Wan, M. Rasetto, M. T. Sharbati, J. R. Erickson, S. R. Velagala, M. T. Reilly, Y. Li, R. Benosman, and F. Xiong, Adv. Intell. Syst. 3, 2100021 (2021).

    Article  Google Scholar 

  24. C. Deng, K. Zhang, L. Liu, Z. He, J. Huang, T. Wang, Y. Liu, X. He, K. Du, and Y. Yi, J. Mater. Chem. A 10, 17326 (2022).

    Article  Google Scholar 

  25. X. Wen, J. Luo, K. Xiang, W. Zhou, C. Zhang, and H. Chen, Chem. Eng. J. 458, 141381 (2023).

    Article  Google Scholar 

  26. Y. Cui, Q. Wang, and Y. Gao, Mater. Today Commun. 25, 101611 (2020).

    Article  Google Scholar 

  27. Y. Cui, Q. Wang, G. Yang, and Y. Gao, J. Solid State Chem. 297, 122082 (2021).

    Article  Google Scholar 

  28. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  29. G. Kresse, and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  30. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  31. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

    Article  ADS  Google Scholar 

  32. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).

    Article  ADS  Google Scholar 

  33. G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).

    Article  ADS  Google Scholar 

  34. H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, and K. Kalantar-zadeh, Adv. Funct. Mater. 21, 2175 (2011).

    Article  Google Scholar 

  35. Z. F. Huang, J. Song, L. Pan, X. Zhang, L. Wang, and J. J. Zou, Adv. Mater. 27, 5309 (2015).

    Article  Google Scholar 

  36. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008), arXiv: 0707.2088.

    Article  ADS  Google Scholar 

  37. B. O. Loopstra, and H. M. Pdetveld, Acta. Cryst. B25, 1420 (1968).

    Google Scholar 

  38. Z. Wang, Y. He, M. Gu, Y. Du, S. X. Mao, and C. Wang, ACS Appl. Mater. Interfaces 8, 24567 (2016).

    Article  Google Scholar 

  39. B. Gerand, G. Nowogrocki, J. Guenot, and M. Figlarz, J. Solid State Chem. 29, 429 (1979).

    Article  ADS  Google Scholar 

  40. H. Yang, H. Sun, Q. Li, P. Li, K. Song, B. Song, and L. Wang, Vacuum 164, 411 (2019).

    Article  ADS  Google Scholar 

  41. M. B. Johansson, G. Baldissera, I. Valyukh, C. Persson, H. Arwin, G. A. Niklasson, and L. Österlund, J. Phys.-Condens. Matter 25, 205502 (2013).

    Article  ADS  Google Scholar 

  42. K. Li, Y. Shao, H. Yan, Z. Lu, K. J. Griffith, J. Yan, G. Wang, H. Fan, J. Lu, W. Huang, B. Bao, X. Liu, C. Hou, Q. Zhang, Y. Li, J. Yu, and H. Wang, Nat. Commun. 9, 4798 (2018).

    Article  ADS  Google Scholar 

  43. G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

    Article  ADS  Google Scholar 

  44. D. S. Dalavi, R. S. Devan, R. A. Patil, R. S. Patil, Y. R. Ma, S. B. Sadale, I. Y. Kim, J. H. Kim, and P. S. Patil, J. Mater. Chem. C 1, 3722 (2013).

    Article  Google Scholar 

  45. Z. Wang, H. Wang, X. Gu, and H. N. Cui, Solid State Ion. 338, 168 (2019).

    Article  Google Scholar 

  46. A. Zimmer, M. Tresse, N. Stein, D. Horwat, and C. Boulanger, Electrochim. Acta 360, 136931 (2020).

    Article  Google Scholar 

  47. W. Guo, C. Guo, N. Zheng, T. Sun, and S. Liu, Adv. Mater. 29, 1604157 (2017).

    Article  Google Scholar 

  48. Z. Yu, Y. Yao, J. Yao, L. Zhang, Z. Chen, Y. Gao, and H. Luo, J. Mater. Chem. A 5, 6019 (2017).

    Article  Google Scholar 

  49. S. Qi, X. Xiao, Y. Lu, C. Huan, Y. Zhan, H. Liu, and G. Xu, Crys-tEngComm 21, 3264 (2019).

    Google Scholar 

  50. N. Li, H. Jia, M. Guo, W. Zhang, J. Wang, and L. Song, Nano Res. 15, 4403 (2022).

    Article  ADS  Google Scholar 

  51. S. Zhang, Y. Shi, T. He, B. Ni, C. Li, and X. Wang, Chem. Mater. 30, 8727 (2018).

    Article  Google Scholar 

  52. Y. Lee, T. Lee, W. Jang, and A. Soon, Chem. Mater. 28, 4528 (2016).

    Article  Google Scholar 

  53. C. Franchini, M. Reticcioli, M. Setvin, and U. Diebold, Nat. Rev. Mater. 6, 560 (2021).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongqing Cai or Qingqing Ke.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021B1515120025), the Guangdong Province International Science and Technology Cooperation Research Project (Grant No. 2023A0505050101), the National Natural Science Foundation of China (Grant No. 22022309), the Science and Technology Development Fund from Macau SAR (Grant Nos. 0120/2023/RIA2, 0085/2023/ITP2, and FDCT-0163/2019/A3), the Natural Science Foundation of Guangdong Province, China (Grant No. 2021A1515010024), and the University of Macau (Grant No. MYRG2020-00075-IAPME).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

11433_2023_2224_MOESM1_ESM.pdf

Facile Intercalation of Alkali Ions in WO3 for Modulated Electronic and Optical Properties: Implications for Artificial Synapses and Chromogenic Application

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huan, C., Lu, Z., Tang, S. et al. Facile intercalation of alkali ions in WO3 for modulated electronic and optical properties: Implications for artificial synapses and chromogenic application. Sci. China Phys. Mech. Astron. 67, 227311 (2024). https://doi.org/10.1007/s11433-023-2224-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2224-8

Navigation