Skip to main content
Log in

Emergent antisymmetric wrinkling patterns in films on ridged substrates

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We report the formation of antisymmetric wrinkling patterns in films on ridged substrates induced by the buckling instability of the substrates via finite element simulations and experiments. Our simulated results reveal that the uniaxial compression along the ridge can trigger both the wrinkling instability of the film and the lateral buckling instability of the ridge. The latter could change the wrinkles from a symmetric pattern to an antisymmetric pattern in a range of film-substrate modulus ratio and aspect ratio of the ridge profile, as validated by the experimental observations. A three-dimensional phase diagram with four buckling patterns, i.e., sole ridge buckling pattern, antisymmetric wrinkling pattern with different wavelengths from ridge buckling, symmetric wrinkling pattern without ridge buckling, and antisymmetric wrinkling pattern with the same wavelength as ridge buckling, is built with respect to the uniaxial compression, modulus ratio, and aspect ratio. The results not only elucidate how and when the interplay between the wrinkling instability and the ridge instability results in the formation of the antisymmetric wrinkling pattern but also offer a way to generate controllable complex wrinkling patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Audoly, and A. Boudaoud, J. Mech. Phys. Solids 56, 2401 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  2. C. Yu, K. O’Brien, Y. H. Zhang, H. Yu, and H. Jiang, Appl. Phys. Lett. 96, 041111 (2010).

    Article  ADS  Google Scholar 

  3. Y. Sun, W. M. Choi, H. Jiang, Y. Y. Huang, and J. A. Rogers, Nat. Nanotech. 1, 201 (2006).

    Article  ADS  Google Scholar 

  4. J. A. Howarter, and C. M. Stafford, Soft Matter 6, 5661 (2010).

    Article  ADS  Google Scholar 

  5. M. S. Grigola, C. L. Dyck, D. S. Babacan, D. N. Joaquin, and K. J. Hsia, Biotechnol. Bioeng. 111, 1617 (2014).

    Article  Google Scholar 

  6. J. A. Rogers, T. Someya, and Y. Huang, Science 327, 1603 (2010).

    Article  ADS  Google Scholar 

  7. J. Y. Chung, J. P. Youngblood, and C. M. Stafford, Soft Matter 3, 1163 (2007).

    Article  ADS  Google Scholar 

  8. D. J. Kim, J. H. Lee, and W. Kim, Ann. Surg. Treat. Res. 86, 45 (2014).

    Article  Google Scholar 

  9. S. Cai, D. Breid, A. J. Crosby, Z. Suo, and J. W. Hutchinson, J. Mech. Phys. Solids 59, 1094 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  10. Z. Cheng, and F. Xu, Sci. China-Phys. Mech. Astron. 64, 214611 (2021).

    Article  ADS  Google Scholar 

  11. Z. Y. Huang, W. Hong, and Z. Suo, J. Mech. Phys. Solids 53, 2101 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  12. J. Yin, and X. Chen, Philos. Mag. Lett. 90, 423 (2010).

    Article  ADS  Google Scholar 

  13. S. Yu, L. Ma, Y. Sun, C. Lu, H. Zhou, and Y. Ni, Langmuir 35, 7146 (2019).

    Article  Google Scholar 

  14. L. Ma, L. He, and Y. Ni, J. Appl. Phys. 127, 111101 (2020).

    Article  ADS  Google Scholar 

  15. H. Vandeparre, M. Piñeirua, F. Brau, B. Roman, J. Bico, C. Gay, W. Bao, C. N. Lau, P. M. Reis, and P. Damman, Phys. Rev. Lett. 106, 224301 (2011).

    Article  ADS  Google Scholar 

  16. W. K. Lee, C. J. Engel, M. D. Huntington, J. Hu, and T. W. Odom, Nano Lett. 15, 5624 (2015).

    Article  ADS  Google Scholar 

  17. S. G. Lee, D. Y. Lee, H. S. Lim, D. H. Lee, S. Lee, and K. Cho, Adv. Mater. 22, 5013 (2010).

    Article  Google Scholar 

  18. G. Cao, X. Chen, C. Li, A. Ji, and Z. Cao, Phys. Rev. Lett. 100, 036102 (2008).

    Article  ADS  Google Scholar 

  19. B. Li, F. Jia, Y. P. Cao, X. Q. Feng, and H. Gao, Phys. Rev. Lett. 106, 234301 (2011).

    Article  ADS  Google Scholar 

  20. D. Breid, and A. J. Crosby, Soft Matter 9, 3624 (2013).

    Article  ADS  Google Scholar 

  21. N. Stoop, R. Lagrange, D. Terwagne, P. M. Reis, and J. Dunkel, Nat. Mater. 14, 337 (2015).

    Article  ADS  Google Scholar 

  22. F. Xu, S. Zhao, C. Lu, and M. Potier-Ferry, J. Mech. Phys. Solids 137, 103892 (2020).

    Article  MathSciNet  Google Scholar 

  23. F. Xu, Y. Huang, S. Zhao, and X. Q. Feng, Nat. Comput. Sci. 2, 632 (2022).

    Article  Google Scholar 

  24. F. Xu, and M. Potier-Ferry, J. Mech. Phys. Solids 94, 68 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Zhao, F. Xu, C. Fu, and Y. Huo, Int. J. Solids Struct. 208–209, 181 (2021).

    Article  Google Scholar 

  26. Y. Zhao, Y. Cao, X. Q. Feng, and K. Ma, J. Mech. Phys. Solids 73, 212 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  27. C. Liu, Y. Du, K. Li, Y. Zhang, Z. Han, Y. Zhang, S. Qu, and C. Lü, J. Mech. Phys. Solids 169, 105087 (2022).

    Article  Google Scholar 

  28. X. Zhang, P. T. Mather, M. J. Bowick, and T. Zhang, Soft Matter 15, 5204 (2019).

    Article  ADS  Google Scholar 

  29. Y. Zhao, W. Guo, H. Zhu, Y. He, C. Jiang, and Y. Cao, J. Mech. Phys. Solids 154, 104516 (2021).

    Article  Google Scholar 

  30. Y. Zhao, H. Zhu, C. Jiang, Y. Cao, and X. Q. Feng, J. Mech. Phys. Solids 135, 103798 (2020).

    Article  MathSciNet  Google Scholar 

  31. Z. C. Shao, Y. Zhao, W. Zhang, Y. Cao, and X. Q. Feng, Soft Matter 12, 7977 (2016).

    Article  ADS  Google Scholar 

  32. S. Yu, X. Zhang, X. Xiao, H. Zhou, and M. Chen, Soft Matter 11, 2203 (2015).

    Article  ADS  Google Scholar 

  33. E. Cerda, J. BioMech. 38, 1598 (2005).

    Article  Google Scholar 

  34. H. Hu, C. Huang, X. H. Liu, and K. J. Hsia, Extreme Mech. Lett. 8, 107 (2016).

    Article  Google Scholar 

  35. C. Lestringant, C. Maurini, A. Lazarus, and B. Audoly, Phys. Rev. Lett. 118, 165501 (2017).

    Article  ADS  Google Scholar 

  36. Y. Zhao, Z. C. Shao, G. Y. Li, Y. Zheng, W. Y. Zhang, B. Li, Y. Cao, and X. Q. Feng, Appl. Phys. Lett. 110, 231604 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ni.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFA1203602), the National Natural Science Foundation of China (Grant Nos. 12025206, 12072337, and 11872335), and the Fundamental Research Funds for the Central Universities (Grant No. WK2090000020).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Sun, Y., He, L. et al. Emergent antisymmetric wrinkling patterns in films on ridged substrates. Sci. China Phys. Mech. Astron. 66, 114612 (2023). https://doi.org/10.1007/s11433-023-2202-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2202-4

Navigation