Skip to main content
Log in

Direct characteristic-function tomography of the quantum states of quantum fields

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Herein, we propose a novel strategy for implementing a direct readout of the symmetric characteristic function of the quantum states of quantum fields without the involvement of idealized measurements, an aspect that has always been deemed ill-defined in quantum field theory. This proposed scheme relies on the quantum control and measurements of an auxiliary qubit locally coupled to the quantum fields. By mapping the expectation values of both the real and imaginary parts of the field displacement operator to the qubit states, the qubit’s readout provides complete information regarding the symmetric characteristic function. We characterize our technique by applying it to the Kubo-Martin-Schwinger (thermal) and squeezed states of a quantum scalar field. In addition, we have discussed general applications of this approach to analogue-gravity systems, such as Bose-Einstein condensates, within the scope of state-of-the-art experimental capabilities. This proposed strategy may serve as an essential in understanding and optimizing the control of quantum fields for relativistic quantum information applications, particularly in exploring the interplay between gravity and quantum, for example, the relation to locality, causality, and information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013).

    Article  ADS  Google Scholar 

  2. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014).

    Article  ADS  Google Scholar 

  3. M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, and C. W. Clark, Rev. Mod. Phys. 90, 025008 (2018).

    Article  ADS  Google Scholar 

  4. C. L. Degen, F. Reinhard, and P. Cappellaro, Rev. Mod. Phys. 89, 035002 (2017).

    Article  ADS  Google Scholar 

  5. S. L. Danilishin, and F. Y. Khalili, Living Rev. Relativ. 15, 5 (2012).

    Article  ADS  Google Scholar 

  6. M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010).

    Google Scholar 

  7. C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys. 84, 621 (2012).

    Article  ADS  Google Scholar 

  8. I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys. 86, 153 (2014). 110412-7

    Article  ADS  Google Scholar 

  9. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).

    Article  ADS  Google Scholar 

  10. M. G. A. Paris, and J. Řehăček, Quantum State Estimation (Springer, Heidelberg, 2004).

    Book  Google Scholar 

  11. R. T. Thew, K. Nemoto, A. G. White, and W. J. Munro, Phys. Rev. A 66, 012303 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  12. Z. Hradil, Phys. Rev. A 55, R1561 (1997).

    Article  ADS  Google Scholar 

  13. D. Gross, Y. K. Liu, S. T. Flammia, S. Becker, and J. Eisert, Phys. Rev. Lett. 105, 150401 (2010).

    Article  ADS  Google Scholar 

  14. U. Leonhardt, Phys. Rev. Lett. 74, 4101 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  15. J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, Nature 430, 431 (2004).

    Article  ADS  Google Scholar 

  16. C. Barthel, D. J. Reilly, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. Lett. 103, 160503 (2009).

    Article  ADS  Google Scholar 

  17. A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, Nature 467, 687 (2010).

    Article  ADS  Google Scholar 

  18. M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, Science 313, 1423 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  19. Y. Liu, J. Tian, R. Betzholz, and J. Cai, Phys. Rev. Lett. 122, 110406 (2019).

    Article  ADS  Google Scholar 

  20. P. Yang, M. Yu, R. Betzholz, C. Arenz, and J. Cai, Phys. Rev. Lett. 124, 010405 (2020).

    Article  ADS  Google Scholar 

  21. A. I. Lvovsky, and M. G. Raymer, Rev. Mod. Phys. 81, 299 (2009).

    Article  ADS  Google Scholar 

  22. O. Landon-Cardinal, L. C. G. Govia, and A. A. Clerk, Phys. Rev. Lett. 120, 090501 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  23. C. Flühmann, and J. P. Home, Phys. Rev. Lett. 125, 043602 (2020).

    Article  ADS  Google Scholar 

  24. H. Laurell, D. Finkelstein-Shapiro, C. Dittel, C. Guo, R. Demjaha, M. Ammitzböll, R. Weissenbilder, L. Neoričić, S. Luo, M. Gisselbrecht, C. L. Arnold, A. Buchleitner, T. Pullerits, A. L’Huillier, and D. Busto, Phys. Rev. Res. 4, 033220 (2022).

    Article  Google Scholar 

  25. R. B. Mann, and T. C. Ralph, Class. Quantum Grav. 29, 220301 (2012).

    Article  ADS  Google Scholar 

  26. A. Peres, and D. R. Terno, Rev. Mod. Phys. 76, 93 (2004).

    Article  ADS  Google Scholar 

  27. B. L. Hu, S. Y. Lin, and J. Louko, Class. Quantum Grav. 29, 224005 (2012).

    Article  ADS  Google Scholar 

  28. D. M. T. Benincasa, L. Borsten, M. Buck, and F. Dowker, Class. Quantum Grav. 31, 075007 (2014).

    Article  ADS  Google Scholar 

  29. E. Martín-Martínez, D. Aasen, and A. Kempf, Phys. Rev. Lett. 110, 160501 (2013).

    Article  ADS  Google Scholar 

  30. P. Kok, and S. L. Braunstein, Int. J. Quantum Inform. 04, 119 (2006).

    Article  Google Scholar 

  31. M. Ahmadi, D. E. Bruschi, and I. Fuentes, Phys. Rev. D 89, 065028 (2014).

    Article  ADS  Google Scholar 

  32. Z. Tian, J. Wang, H. Fan, and J. Jing, Sci. Rep. 5, 7946 (2015).

    Article  ADS  Google Scholar 

  33. X. Liu, J. Jing, Z. Tian, and W. Yao, Phys. Rev. D 103, 125025 (2021).

    Article  ADS  Google Scholar 

  34. H. Du, and R. B. Mann, J. High Energ. Phys. 2021, 112 (2021).

    Article  Google Scholar 

  35. Y. Yang, J. Jing, and Z. Tian, Eur. Phys. J. C 82, 688 (2022).

    Article  ADS  Google Scholar 

  36. J. Feng, and J. J. Zhang, Phys. Lett. B 827, 136992 (2022).

    Article  Google Scholar 

  37. E. Patterson, and R. B. Mann, J. High Energ. Phys. 2023, 214 (2023).

    Article  Google Scholar 

  38. C. Barceló, S. Liberati, and M. Visser, Living Rev. Relativ. 14, 3 (2011).

    Article  ADS  Google Scholar 

  39. Z. Tian, Y. Lin, U. R. Fischer, and J. Du, Eur. Phys. J. C 82, 212 (2022).

    Article  ADS  Google Scholar 

  40. J. Lindkvist, C. Sabín, I. Fuentes, A. Dragan, I. M. Svensson, P. Delsing, and G. Johansson, Phys. Rev. A 90, 052113 (2014).

    Article  ADS  Google Scholar 

  41. T. R. Perche, and E. Martín-Martínez, Phys. Rev. D 105, 066011 (2022).

    Article  ADS  Google Scholar 

  42. T. R. Perche, and A. Shalabi, Phys. Rev. D 105, 125011 (2022).

    Article  ADS  Google Scholar 

  43. Z. Tian, and J. Du, Phys. Rev. D 103, 085014 (2021).

    Article  ADS  Google Scholar 

  44. V. Husain, and J. Louko, Phys. Rev. Lett. 116, 061301 (2016).

    Article  ADS  Google Scholar 

  45. Z. Tian, L. Wu, L. Zhang, J. Jing, and J. Du, Phys. Rev. D 106, L061701 (2022).

    Article  ADS  Google Scholar 

  46. Y. Zou, M. Wang, and J. Jing, Sci. China-Phys. Mech. Astron. 64, 250411 (2021).

    Article  ADS  Google Scholar 

  47. P. M. Alsing, and G. J. Milburn, Phys. Rev. Lett. 91, 180404 (2003).

    Article  ADS  Google Scholar 

  48. I. Fuentes-Schuller, and R. B. Mann, Phys. Rev. Lett. 95, 120404 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  49. N. Friis, A. R. Lee, K. Truong, C. Sabín, E. Solano, G. Johansson, and I. Fuentes, Phys. Rev. Lett. 110, 113602 (2013).

    Article  ADS  Google Scholar 

  50. S. Y. Lin, C. H. Chou, and B. L. Hu, Phys. Rev. D 91, 084063 (2015).

    Article  ADS  Google Scholar 

  51. J. Foo, and T. C. Ralph, Phys. Rev. D 101, 085006 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  52. E. Tjoa, Phys. Rev. A 106, 032432 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  53. R. D. Sorkin, Impossible measurements on quantum Lelds, in Directions in General Relativity: An International Symposium in Honor of the 60th Birthdays of Dieter Brill and Charles Misner (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  54. D. Beckman, D. Gottesman, M. A. Nielsen, and J. Preskill, Phys. Rev. A 64, 052309 (2001).

    Article  ADS  Google Scholar 

  55. L. Borsten, I. Jubb, and G. Kells, Phys. Rev. D 104, 025012 (2021).

    Article  ADS  Google Scholar 

  56. H. Bostelmann, C. J. Fewster, and M. H. Ruep, Phys. Rev. D 103, 025017 (2021).

    Article  ADS  Google Scholar 

  57. I. Jubb, Phys. Rev. D 105, 025003 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  58. C. J. Fewster, and R. Verch, Commun. Math. Phys. 378, 851 (2020).

    Article  ADS  Google Scholar 

  59. E. Martín-Martínez, and P. Rodriguez-Lopez, Phys. Rev. D 97, 105026 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  60. J. de Ramón, L. J. Garay, and E. Martín-Martínez, Phys. Rev. D 98, 105011 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  61. D. Grimmer, B. S. L. Torres, and E. Martín-Martínez, Phys. Rev. D 104, 085014 (2021).

    Article  ADS  Google Scholar 

  62. J. Polo-Gómez, L. J. Garay, and E. Martín-Martínez, Phys. Rev. D 105, 065003 (2022).

    Article  ADS  Google Scholar 

  63. A. Ortega, E. McKay, Á. M. Alhambra, and E. Martín-Martínez, Phys. Rev. Lett. 122, 240604 (2019).

    Article  ADS  Google Scholar 

  64. A. Teixidó-Bonfill, A. Ortega, and E. Martín-Martínez, Phys. Rev. A 102, 052219 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  65. R. Betzholz, Y. Liu, and J. Cai, Phys. Rev. A 104, 012421 (2021).

    Article  ADS  Google Scholar 

  66. S. Barnett, and P. M. Radmore, Methods in Theoretical Quantum Optics (Oxford University Press, Oxford, 2002).

    Book  Google Scholar 

  67. A. Ferraro, S. Olivares, and M. G. A. Paris, Gaussian States in Continuous Variable Quantum Information (Bibliopolis, Napoli, 2005).

    Google Scholar 

  68. N. D. Birrell, and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1984).

    Google Scholar 

  69. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

    Article  ADS  Google Scholar 

  70. P. C. Martin, and J. Schwinger, Phys. Rev. 115, 1342 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  71. P. Simidzija, and E. Martín-Martínez, Phys. Rev. D 98, 085007 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  72. A. A. Svidzinsky, J. S. Ben-Benjamin, S. A. Fulling, and D. N. Page, Phys. Rev. Lett. 121, 071301 (2018).

    Article  ADS  Google Scholar 

  73. M. O. Scully, S. Fulling, D. M. Lee, D. N. Page, W. P. Schleich, and A. A. Svidzinsky, Proc. Natl. Acad. Sci. USA 115, 8131 (2018).

    Article  ADS  Google Scholar 

  74. A. A. Svidzinsky, Phys. Rev. Res. 1, 033027 (2019).

    Article  Google Scholar 

  75. A. Mari, K. Kieling, B. M. Nielsen, E. S. Polzik, and J. Eisert, Phys. Rev. Lett. 106, 010403 (2011).

    Article  ADS  Google Scholar 

  76. P. D. Nation, J. R. Johansson, M. P. Blencowe, and F. Nori, Rev. Mod. Phys. 84, 1 (2012).

    Article  ADS  Google Scholar 

  77. M. Johanning, A. F. Varón, and C. Wunderlich, J. Phys. B-At. Mol. Opt. Phys. 42, 154009 (2009).

    Article  ADS  Google Scholar 

  78. P. O. Fedichev, and U. R. Fischer, Phys. Rev. Lett. 91, 240407 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  79. A. Recati, P. O. Fedichev, W. Zwerger, J. von Delft, and P. Zoller, Phys. Rev. Lett. 94, 040404 (2005).

    Article  ADS  Google Scholar 

  80. P. O. Fedichev, and U. R. Fischer, Phys. Rev. D 69, 064021 (2004).

    Article  ADS  Google Scholar 

  81. J. Marino, A. Recati, and I. Carusotto, Phys. Rev. Lett. 118, 045301 (2017).

    Article  ADS  Google Scholar 

  82. J. Marino, G. Menezes, and I. Carusotto, Phys. Rev. Res. 2, 042009 (2020).

    Article  Google Scholar 

  83. R. Ozeri, N. Katz, J. Steinhauer, and N. Davidson, Rev. Mod. Phys. 77, 187 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zehua Tian.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFA0306600), and Anhui Initiative in Quantum Information Technologies (Grant No. AHY050000). Zehua Tian was supported by the National Natural Science Foundation of China (Grant No. 11905218), and the CAS Key Laboratory for Research in Galaxies and Cosmology, Chinese Academy of Sciences (Grant No. 18010203)

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Z., Jing, J. & Du, J. Direct characteristic-function tomography of the quantum states of quantum fields. Sci. China Phys. Mech. Astron. 66, 110412 (2023). https://doi.org/10.1007/s11433-023-2196-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2196-9

Navigation