Skip to main content
Log in

Cubic H3S stabilized by halogens: High-temperature superconductors at mild pressure

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Superconductivity in compressed sulfur hydride (H3S) at above 200 K has attracted great interest in the study of hydrogen-based superconductors. However, the pressure required to stabilize H3S is 150 GPa, posing significant challenges for experiments. Therefore, it is essential to find a strategy to reduce this pressure. In this study, by introducing halogen atoms into the H-S system, we discovered that hydrogen-based superconductors of H6SX (X = Cl and Br) can be dynamically stable at mild pressures (5 GPa for H6SCl and H6SBr), as confirmed by first-principles calculations. Through the analysis of the bond properties, we revealed that introducing halogen elements would strengthen the H-S covalent bonds to reduce the dynamically stable pressure of H3S. Our study provides a scheme to reduce the superconducting pressure of hydrogen-based superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Duan, Y. Liu, Y. Ma, Z. Shao, B. Liu, and T. Cui, Natl. Sci. Rev. 4, 121 (2017).

    Article  Google Scholar 

  2. H. Wang, X. Li, G. Gao, Y. Li, and Y. Ma, WIREs Comput. Mol. Sci. 8, e1330 (2018).

    Article  Google Scholar 

  3. A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Nature 525, 73 (2015).

    Article  ADS  Google Scholar 

  4. M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. I. Eremets, A. P. Drozdov, I. A. Troyan, N. Hirao, and Y. Ohishi, Nat. Phys. 12, 835 (2016).

    Article  Google Scholar 

  5. D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, Sci. Rep. 4, 6968 (2014).

    Article  ADS  Google Scholar 

  6. H. Wang, J. S. Tse, K. Tanaka, T. Iitaka, and Y. Ma, Proc. Natl. Acad. Sci. USA 109, 6463 (2012).

    Article  ADS  Google Scholar 

  7. Y. Li, J. Hao, H. Liu, J. S. Tse, Y. Wang, and Y. Ma, Sci. Rep. 5, 9948 (2015).

    Article  ADS  Google Scholar 

  8. H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, Proc. Natl. Acad. Sci. USA 114, 6990 (2017).

    Article  ADS  Google Scholar 

  9. F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, Phys. Rev. Lett. 119, 107001 (2017).

    Article  ADS  Google Scholar 

  10. Y. Sun, J. Lv, Y. Xie, H. Liu, and Y. Ma, Phys. Rev. Lett. 123, 097001 (2019).

    Article  ADS  Google Scholar 

  11. Y. Ge, F. Zhang, R. P. Dias, R. J. Hemley, and Y. Yao, Mater. Today Phys. 15, 100330 (2020).

    Article  Google Scholar 

  12. H. Song, Z. Zhang, T. Cui, C. J. Pickard, V. Z. Kresin, and D. Duan, Chin. Phys. Lett. 38, 107401 (2021).

    Article  ADS  Google Scholar 

  13. Z. Zhang, T. Cui, M. J. Hutcheon, A. M. Shipley, H. Song, M. Du, V. Z. Kresin, D. Duan, C. J. Pickard, and Y. Yao, Phys. Rev. Lett. 128, 047001 (2022).

    Article  ADS  Google Scholar 

  14. M. Du, H. Song, Z. Zhang, D. Duan, and T. Cui, Research 2022, 9784309 (2022).

    ADS  Google Scholar 

  15. M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, Phys. Rev. Lett. 122, 027001 (2019).

    Article  ADS  Google Scholar 

  16. A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, and M. I. Eremets, Nature 569, 528 (2019).

    Article  ADS  Google Scholar 

  17. F. Hong, L. Yang, P. Shan, P. Yang, Z. Liu, J. Sun, Y. Yin, X. Yu, J. Cheng, and Z. Zhao, Chin. Phys. Lett. 37, 107401 (2020).

    Article  ADS  Google Scholar 

  18. I. A. Troyan, D. V. Semenok, A. G. Kvashnin, A. V. Sadakov, O. A. Sobolevskiy, V. M. Pudalov, A. G. Ivanova, V. B. Prakapenka, E. Greenberg, A. G. Gavriliuk, I. S. Lyubutin, V. V. Struzhkin, A. Bergara, I. Errea, R. Bianco, M. Calandra, F. Mauri, L. Monacelli, R. Akashi, and A. R. Oganov, Adv. Mater. 33, 2006832 (2021).

    Article  Google Scholar 

  19. P. Kong, V. S. Minkov, M. A. Kuzovnikov, A. P. Drozdov, S. P. Besedin, S. Mozaffari, L. Balicas, F. F. Balakirev, V. B. Prakapenka, S. Chariton, D. A. Knyazev, E. Greenberg, and M. I. Eremets, Nat. Commun. 12, 5075 (2021).

    Article  ADS  Google Scholar 

  20. E. Snider, N. Dasenbrock-Gammon, R. McBride, X. Wang, N. Meyers, K. V. Lawler, E. Zurek, A. Salamat, and R. P. Dias, Phys. Rev. Lett. 126, 117003 (2021).

    Article  ADS  Google Scholar 

  21. L. Ma, K. Wang, Y. Xie, X. Yang, Y. Wang, M. Zhou, H. Liu, X. Yu, Y. Zhao, H. Wang, G. Liu, and Y. Ma, Phys. Rev. Lett. 128, 167001 (2022).

    Article  ADS  Google Scholar 

  22. Z. Li, X. He, C. Zhang, X. Wang, S. Zhang, Y. Jia, S. Feng, K. Lu, J. Zhao, J. Zhang, B. Min, Y. Long, R. Yu, L. Wang, M. Ye, Z. Zhang, V. Prakapenka, S. Chariton, P. A. Ginsberg, J. Bass, S. Yuan, H. Liu, and C. Jin, Nat. Commun. 13, 2863 (2022).

    Article  ADS  Google Scholar 

  23. J. Bi, Y. Nakamoto, P. Zhang, K. Shimizu, B. Zou, H. Liu, M. Zhou, G. Liu, H. Wang, and Y. Ma, Nat. Commun. 13, 5952 (2022).

    Article  ADS  Google Scholar 

  24. W. Chen, X. Huang, D. V. Semenok, S. Chen, D. Zhou, K. Zhang, A. R. Oganov, and T. Cui, Nat. Commun. 14, 2660 (2023).

    Article  ADS  Google Scholar 

  25. S. Di Cataldo, C. Heil, W. von der Linden, and L. Boeri, Phys. Rev. B 104, L020511 (2021).

    Article  ADS  Google Scholar 

  26. X. Liang, A. Bergara, X. Wei, X. Song, L. Wang, R. Sun, H. Liu, R. J. Hemley, L. Wang, G. Gao, and Y. Tian, Phys. Rev. B 104, 134501 (2021).

    Article  ADS  Google Scholar 

  27. Y. Song, J. Bi, Y. Nakamoto, K. Shimizu, H. Liu, B. Zou, G. Liu, H. Wang, and Y. Ma, Phys. Rev. Lett. 130, 266001 (2023).

    Article  ADS  Google Scholar 

  28. M. Du, Z. Zhang, T. Cui, and D. Duan, Phys. Chem. Chem. Phys. 23, 22779 (2021).

    Article  Google Scholar 

  29. W. Cui, T. Bi, J. Shi, Y. Li, H. Liu, E. Zurek, and R. J. Hemley, Phys. Rev. B 101, 134504 (2020).

    Article  ADS  Google Scholar 

  30. Y. Sun, Y. Tian, B. Jiang, X. Li, H. Li, T. Iitaka, X. Zhong, and Y. Xie, Phys. Rev. B 101, 174102 (2020).

    Article  ADS  Google Scholar 

  31. Y. Ge, F. Zhang, and Y. Yao, Phys. Rev. B 93, 224513 (2016).

    Article  ADS  Google Scholar 

  32. A. Nakanishi, T. Ishikawa, and K. Shimizu, J. Phys. Soc. Jpn. 87, 124711 (2018).

    Article  ADS  Google Scholar 

  33. Z. Shao, H. Song, H. Yu, and D. Duan, J. Supercond. Nov. Magn. 35, 979 (2022).

    Article  Google Scholar 

  34. Y. L. Hai, H. L. Tian, M. J. Jiang, H. B. Ding, Y. J. Feng, G. H. Zhong, C. L. Yang, X. J. Chen, and H. Q. Lin, Phys. Rev. B 105, L180508 (2022).

    Article  ADS  Google Scholar 

  35. C. J. Pickard, and R. J. Needs, J. Phys.-Condens. Matter 23, 053201 (2011).

    Article  ADS  Google Scholar 

  36. M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, J. Phys.-Condens. Matter 14, 2717 (2002).

    Article  ADS  Google Scholar 

  37. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  38. G. Kresse, and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  39. G. Kresse, and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  40. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  41. R. Dronskowski, and P. E. Bloechl, J. Phys. Chem. 97, 8617 (1993).

    Article  Google Scholar 

  42. S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, J. Comput. Chem. 37, 1030 (2016).

    Article  Google Scholar 

  43. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.-Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  44. W. L. McMillan, Phys. Rev. 167, 331 (1968).

    Article  ADS  Google Scholar 

  45. P. B. Allen, and R. C. Dynes, Phys. Rev. B 12, 905 (1975).

    Article  ADS  Google Scholar 

  46. G. Eliashberg, Sov. Phys. JETP 11, 696 (1960).

    Google Scholar 

  47. P. Morel, and P. W. Anderson, Phys. Rev. 125, 1263 (1962).

    Article  ADS  Google Scholar 

  48. D. Duan, F. Tian, Z. He, X. Meng, L. Wang, C. Chen, X. Zhao, B. Liu, and T. Cui, J. Chem. Phys. 133, 074509 (2010).

    Article  ADS  Google Scholar 

  49. D. Duan, X. Huang, F. Tian, Y. Liu, D. Li, H. Yu, B. Liu, W. Tian, and T. Cui, J. Phys. Chem. A 119, 11059 (2015).

    Article  Google Scholar 

  50. D. Duan, X. Huang, F. Tian, D. Li, H. Yu, Y. Liu, Y. Ma, B. Liu, and T. Cui, Phys. Rev. B 91, 180502 (2015).

    Article  ADS  Google Scholar 

  51. D. Duan, F. Tian, X. Huang, D. Li, H. Yu, Y. Liu, Y. Ma, B. Liu, and T. Cui, arXiv: 1504.01196.

  52. Y. Li, L. Wang, H. Liu, Y. Zhang, J. Hao, C. J. Pickard, J. R. Nelson, R. J. Needs, W. Li, Y. Huang, I. Errea, M. Calandra, F. Mauri, and Y. Ma, Phys. Rev. B 93, 020103 (2016).

    Article  ADS  Google Scholar 

  53. Y. Wu, P. Lazic, G. Hautier, K. Persson, and G. Ceder, Energy Environ. Sci. 6, 157 (2013).

    Article  Google Scholar 

  54. Y. Hinuma, T. Hatakeyama, Y. Kumagai, L. A. Burton, H. Sato, Y. Muraba, S. Iimura, H. Hiramatsu, I. Tanaka, H. Hosono, and F. Oba, Nat. Commun. 7, 11962 (2016).

    Article  ADS  Google Scholar 

  55. A. Santoro, and A. D. Mighell, Acta Crystallogr. Sect. A 28, 284 (1972).

    Article  ADS  Google Scholar 

  56. X. Jin, X. J. Chen, T. Cui, H. Mao, H. Zhang, Q. Zhuang, K. Bao, D. Zhou, B. Liu, Q. Zhou, and Z. He, Proc. Natl. Acad. Sci. USA 113, 2366 (2016).

    Article  ADS  Google Scholar 

  57. I. Errea, M. Calandra, C. J. Pickard, J. R. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, Nature 532, 81 (2016).

    Article  ADS  Google Scholar 

  58. I. Errea, F. Belli, L. Monacelli, A. Sanna, T. Koretsune, T. Tadano, R. Bianco, M. Calandra, R. Arita, F. Mauri, and J. A. Flores-Livas, Nature 578, 66 (2020).

    Article  ADS  Google Scholar 

  59. H. Xie, Y. Yao, X. Feng, D. Duan, H. Song, Z. Zhang, S. Jiang, S. A. T. Redfern, V. Z. Kresin, C. J. Pickard, and T. Cui, Phys. Rev. Lett. 125, 217001 (2020).

    Article  ADS  Google Scholar 

  60. W. Grochala, R. Hoffmann, J. Feng, and N. W. Ashcroft, Angew. Chem. Int. Ed. 46, 3620 (2007).

    Article  Google Scholar 

  61. X. Dong, A. R. Oganov, H. Cui, X. F. Zhou, and H. T. Wang, Proc. Natl. Acad. Sci. USA 119, e2117416119 (2022).

    Article  Google Scholar 

  62. R. F. W. Bader, and T. T. Nguyen-Dang, Adv. Quantum Chem. 14, 63 (1981).

    Article  ADS  Google Scholar 

  63. G. Henkelman, A. Arnaldsson, and H. Jónsson, Comput. Mater. Sci. 36, 354 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Defang Duan.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12122405, 52072188, and 12274169), the National Key R&D Program of China (Grant No. 2022YFA1402304), the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT_15R23), and the Jilin Provincial Science and Technology Development Project (Grant No. 20210509038RQ). Some of the calculations were performed at the High Performance Computing Center of Jilin University and using TianHe-1(A) at the National Supercomputer Center in Tianjin.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplemental Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, Z., Duan, D., Jiang, Q. et al. Cubic H3S stabilized by halogens: High-temperature superconductors at mild pressure. Sci. China Phys. Mech. Astron. 66, 118211 (2023). https://doi.org/10.1007/s11433-023-2185-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2185-1

Navigation