Skip to main content
Log in

Breakdown of effective-medium theory by a photonic spin Hall effect

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Effective-medium theory pertains to the theoretical modelling of homogenization, which aims to replace an inhomogeneous structure of subwavelength-scale constituents with a homogeneous effective medium. The effective-medium theory is fundamental to various realms, including electromagnetics and material science, since it can largely decrease the complexity in the exploration of light-matter interactions by providing simple acceptable approximation. Generally, the effective-medium theory is thought to be applicable to any all-dielectric system with deep-subwavelength constituents, under the condition that the effective medium does not have a critical angle, at which the total internal reflection occurs. Here we reveal a fundamental breakdown of the effective-medium theory that can be applied in very general conditions: showing it for deep-subwavelength all-dielectric multilayers even without a critical angle. Our finding relies on an exotic photonic spin Hall effect, which is shown to be ultrasensitive to the stacking order of deep-subwavelength dielectric layers, since the spin-orbit interaction of light is dependent on slight phase accumulations during the wave propagation. Our results indicate that the photonic spin Hall effect could provide a promising and powerful tool for measuring structural defects for all-dielectric systems even in the extreme nanometer scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Phys. Rev. Lett. 93, 107402 (2004), arXiv: cond-mat/0407366.

    Article  ADS  Google Scholar 

  2. F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, Nat. Phys. 9, 55 (2013).

    Article  Google Scholar 

  3. T. C. Choy, Effective Medium Theory: Principles and Applications (2nd ed.) (Oxford University Press, Oxford, 2015).

    Google Scholar 

  4. J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, Cambridge, 2008).

    Google Scholar 

  5. A. Vakil, and N. Engheta, Science 332, 1291 (2011).

    Article  ADS  Google Scholar 

  6. D. N. Basov, M. M. Fogler, and F. J. Garcia de Abajo, Science 354, aag1992 (2016).

    Article  Google Scholar 

  7. T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, Nat. Mater. 16, 182 (2017), arXiv: 1610.04548.

    Article  ADS  Google Scholar 

  8. X. Lin, Z. Liu, T. Stauber, G. Gómez-Santos, F. Gao, H. Chen, B. Zhang, and T. Low, Phys. Rev. Lett. 125, 077401 (2020), arXiv: 2006.10474.

    Article  ADS  Google Scholar 

  9. J. C. M. Garnett, Phil. Trans. R. Soc. Lond. A 203, 385 (1904).

    Article  ADS  Google Scholar 

  10. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008), arXiv: 0803.1670.

    Article  ADS  Google Scholar 

  11. W. Cai, and V. M. Shalaev, Optical Metamaterials (Springer, New York, 2010).

    Book  Google Scholar 

  12. Y. Liu, and X. Zhang, Chem. Soc. Rev. 40, 2494 (2011).

    Article  Google Scholar 

  13. N. I. Zheludev, and Y. S. Kivshar, Nat. Mater. 11, 917 (2012).

    Article  ADS  Google Scholar 

  14. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, Nat. Mater. 11, 426 (2012).

    Article  ADS  Google Scholar 

  15. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Science 339, 1232009 (2013).

    Article  Google Scholar 

  16. X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, Science 339, 1405 (2013).

    Article  ADS  Google Scholar 

  17. H. T. Chen, A. J. Taylor, and N. Yu, Rep. Prog. Phys. 79, 076401 (2016), arXiv: 1605.07672.

    Article  ADS  Google Scholar 

  18. D. R. Smith, and N. Kroll, Phys. Rev. Lett. 85, 2933 (2000).

    Article  ADS  Google Scholar 

  19. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).

    Article  ADS  Google Scholar 

  20. V. M. Shalaev, Nat. Photon. 1, 41 (2007).

    Article  ADS  Google Scholar 

  21. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature 455, 376 (2008).

    Article  ADS  Google Scholar 

  22. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, Nat. Photon. 7, 948 (2013).

    Article  ADS  Google Scholar 

  23. L. Shen, X. Lin, M. Y. Shalaginov, T. Low, X. Zhang, B. Zhang, and H. Chen, Appl. Phys. Rev. 7, 021403 (2020), arXiv: 2003.12727.

    Article  ADS  Google Scholar 

  24. D. Lee, S. So, G. Hu, M. Kim, T. Badloe, H. Cho, J. Kim, H. Kim, C. W. Qiu, and J. Rho, eLight 2, 1 (2022).

    Article  Google Scholar 

  25. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, Nat. Mater. 8, 568 (2009), arXiv: 0904.3602.

    Article  ADS  Google Scholar 

  26. T. Cai, B. Zheng, J. Lou, L. Shen, Y. Yang, S. Tang, E. Li, C. Qian, and H. Chen, Adv. Mater. 34, 2205053 (2022).

    Article  Google Scholar 

  27. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).

    Article  ADS  Google Scholar 

  28. N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).

    Article  ADS  Google Scholar 

  29. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Science 315, 1699 (2007), arXiv: physics/0610230.

    Article  ADS  Google Scholar 

  30. X. Zhang, and Z. Liu, Nat. Mater. 7, 435 (2008).

    Article  ADS  Google Scholar 

  31. F. Wang, and Y. R. Shen, Phys. Rev. Lett. 97, 206806 (2006).

    Article  ADS  Google Scholar 

  32. O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, Phys. Rev. A 85, 053842 (2012).

    Article  ADS  Google Scholar 

  33. M. Mahmoodi, S. H. Tavassoli, O. Takayama, J. Sukham, R. Malureanu, and A. V. Lavrinenko, Laser Photonics Rev. 13, 1800253 (2019).

    Article  ADS  Google Scholar 

  34. H. Hu, X. Lin, J. Zhang, D. Liu, P. Genevet, B. Zhang, and Y. Luo, Laser Photonics Rev. 14, 2000149 (2020).

    Article  ADS  Google Scholar 

  35. H. H. Sheinfux, I. Kaminer, Y. Plotnik, G. Bartal, and M. Segev, Phys. Rev. Lett. 113, 243901 (2014).

    Article  ADS  Google Scholar 

  36. S. V. Zhukovsky, A. Andryieuski, O. Takayama, E. Shkondin, R. Malureanu, F. Jensen, and A. V. Lavrinenko, Phys. Rev. Lett. 115, 177402 (2015), arXiv: 1506.08078.

    Article  ADS  Google Scholar 

  37. A. Andryieuski, A. V. Lavrinenko, and S. V. Zhukovsky, Nanotechnology 26, 184001 (2015).

    Article  ADS  Google Scholar 

  38. H. H. Sheinfux, I. Kaminer, A. Z. Genack, and M. Segev, Nat. Commun. 7, 12927 (2016).

    Article  ADS  Google Scholar 

  39. H. H. Sheinfux, Y. Lumer, G. Ankonina, A. Z. Genack, G. Bartal, and M. Segev, Science 356, 953 (2017).

    Article  ADS  Google Scholar 

  40. M. Onoda, S. Murakami, and N. Nagaosa, Phys. Rev. Lett. 93, 083901 (2004), arXiv: cond-mat/0405129.

    Article  ADS  Google Scholar 

  41. K. Y. Bliokh, and Y. P. Bliokh, Phys. Rev. Lett. 96, 073903 (2006), arXiv: physics/0508093.

    Article  ADS  Google Scholar 

  42. O. Hosten, and P. Kwiat, Science 319, 787 (2008).

    Article  ADS  Google Scholar 

  43. K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, Nat. Photon. 2, 748 (2008), arXiv: 0810.2136.

    Article  ADS  Google Scholar 

  44. Y. Qin, Y. Li, H. He, and Q. Gong, Opt. Lett. 34, 2551 (2009).

    Article  ADS  Google Scholar 

  45. X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, Rep. Prog. Phys. 80, 066401 (2017).

    Article  ADS  Google Scholar 

  46. B. Wang, K. Rong, E. Maguid, V. Kleiner, and E. Hasman, Nat. Nanotechnol. 15, 450 (2020).

    Article  ADS  Google Scholar 

  47. M. Kim, D. Lee, and J. Rho, Laser Photonics Rev. 15, 2100138 (2021), arXiv: 2101.08938.

    Article  ADS  Google Scholar 

  48. C. Chi, Q. Jiang, Z. Liu, L. Zheng, M. Jiang, H. Zhang, F. Lin, B. Shen, and Z. Fang, Sci. Adv. 7, eabf8011 (2021).

    Article  ADS  Google Scholar 

  49. L. Sheng, X. Zhou, Y. Zhong, X. Zhang, Y. Chen, Z. Zhang, H. Chen, and X. Lin, Laser Photonics Rev. 17, 2200534 (2023).

    Article  ADS  Google Scholar 

  50. Z. Chen, Y. Chen, Y. Wu, X. Zhou, H. Sun, T. Low, H. Chen, and X. Lin, Phys. Rev. B 106, 075409 (2022), arXiv: 2202.10732.

    Article  ADS  Google Scholar 

  51. J. Petersen, J. Volz, and A. Rauschenbeutel, Science 346, 67 (2014), arXiv: 1406.2184.

    Article  ADS  Google Scholar 

  52. K. Y. Bliokh, F. J. Rodríguez-Fortuno, F. Nori, and A. V. Zayats, Nat. Photon. 9, 796 (2015).

    Article  ADS  Google Scholar 

  53. F. Cardano, and L. Marrucci, Nat. Photon. 9, 776 (2015).

    Article  ADS  Google Scholar 

  54. Z. Shao, J. Zhu, Y. Chen, Y. Zhang, and S. Yu, Nat. Commun. 9, 926 (2018), arXiv: 1709.09811.

    Article  ADS  Google Scholar 

  55. S. Fu, C. Guo, G. Liu, Y. Li, H. Yin, Z. Li, and Z. Chen, Phys. Rev. Lett. 123, 243904 (2019).

    Article  ADS  Google Scholar 

  56. L. Fang, H. Wang, Y. Liang, H. Cao, and J. Wang, Phys. Rev. Lett. 127, 233901 (2021).

    Article  ADS  Google Scholar 

  57. H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, Phys. Rev. A 84, 033801 (2011), arXiv: 1105.2936.

    Article  ADS  Google Scholar 

  58. B. Wang, Y. Li, M. M. Pan, J. L. Ren, Y. F. Xiao, H. Yang, and Q. Gong, Phys. Rev. A 88, 043842 (2013).

    Article  ADS  Google Scholar 

  59. H. Dai, L. Yuan, C. Yin, Z. Cao, and X. Chen, Phys. Rev. Lett. 124, 053902 (2020).

    Article  ADS  Google Scholar 

  60. M. Neugebauer, S. Nechayev, M. Vorndran, G. Leuchs, and P. Banzer, Nano Lett. 19, 422 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinxing Zhou, Hongsheng Chen or Xiao Lin.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Xiao Lin acknowledges the support partly from the National Natural Science Fund for Excellent Young Scientists Fund Program (Overseas) of China, National Natural Science Foundation of China (Grant No. 62175212), Zhejiang Provincial Natural Science Fund Key Project (Grant No. Z23F050009), Fundamental Research Funds for the Central Universities (Grant No. 2021FZZX001-19), and Zhejiang University Global Partnership Fund. Hongsheng Chen acknowledges the support partly from the Key Research and Development Program of the Ministry of Science and Technology (Grant Nos. 2022YFA1404704, 2022YFA1404902, and 2022YFA1405200), and the National Natural Science Foundation of China (Grant Nos. 11961141010, and 61975176). Ido Kaminer acknowledges the support from the Israel Science Foundation (Grant No. 3334/19), and the Israel Science Foundation (Grant No. 830/19). Xinxing Zhou was supported by the National Natural Science Foundation of China (Grant No. 11604095), and the Training Program for Excellent Young Innovators of Changsha (Grant No. kq2107013).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, S., Zhou, X., Chen, Y. et al. Breakdown of effective-medium theory by a photonic spin Hall effect. Sci. China Phys. Mech. Astron. 66, 114212 (2023). https://doi.org/10.1007/s11433-023-2177-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2177-3

Navigation