Skip to main content
Log in

The Qitai radio telescope

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

This study presents a general outline of the Qitai radio telescope (QTT) project. Qitai, the site of the telescope, is a county of Xinjiang Uygur Autonomous Region of China, located in the east Tianshan Mountains at an elevation of about 1800 m. The QTT is a fully steerable, Gregorian-type telescope with a standard parabolic main reflector of 110 m diameter. The QTT has adopted an umbrella support, homology-symmetric lightweight design. The main reflector is active so that the deformation caused by gravity can be corrected. The structural design aims to ultimately allow high-sensitivity observations from 150 MHz up to 115 GHz. To satisfy the requirements for early scientific goals, the QTT will be equipped with ultra-wideband receivers and large field-of-view multi-beam receivers. A multi-function signal-processing system based on RFSoC and GPU processor chips will be developed. These will enable the QTT to operate in pulsar, spectral line, continuum and Very Long Baseline Interferometer (VLBI) observing modes. Electromagnetic compatibility (EMC) and radio frequency interference (RFI) control techniques are adopted throughout the system design. The QTT will form a world-class observational platform for the detection of low-frequency (nanoHertz) gravitational waves through pulsar timing array (PTA) techniques, pulsar surveys, the discovery of binary black-hole systems, and exploring dark matter and the origin of life in the universe. The QTT will also play an important role in improving the Chinese and international VLBI networks, allowing high-sensitivity and high-resolution observations of the nuclei of distant galaxies and gravitational lensing systems. Deep astrometric observations will also contribute to improving the accuracy of the celestial reference frame. Potentially, the QTT will be able to support future space activities such as planetary exploration in the solar system and to contribute to the search for extraterrestrial intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-Q. Cheng, The Principles of Astronomical Telescope Design (Springer, Heidelberg, 2009), p. 377.

    Book  Google Scholar 

  2. S. Srikanth, R. Norrod, L. King, D. Parker, in IEEE Antennas and Propagation Society International Symposium (IEEE, Orlando, 1999), pp. 1548–1551.

    Google Scholar 

  3. R. Nan, D. I. Li, C. Jin, Q. Wang, L. Zhu, W. Zhu, H. Zhang, Y. Yue, and L. Qian, Int. J. Mod. Phys. D 20, 989 (2011).

    Article  ADS  Google Scholar 

  4. M. Naddaf, Nature 613, 11 (2023).

    Article  ADS  Google Scholar 

  5. G. B. Hobbs, M. Bailes, N. D. R. Bhat, S. Burke-Spolaor, D. J. Champion, W. Coles, A. Hotan, F. Jenet, L. Kedziora-Chudczer, J. Khoo, K. J. Lee, A. Lommen, R. N. Manchester, J. Reynolds, J. Sarkissian, W. van Straten, S. To, J. P. W. Verbiest, D. Yardley, and X. P. You, Publ. Astron. Soc. Aust. 26, 103 (2009).

    Article  ADS  Google Scholar 

  6. R. M. Shannon, V. Ravi, W. A. Coles, G. Hobbs, M. J. Keith, R. N. Manchester, J. S. B. Wyithe, M. Bailes, N. D. R. Bhat, S. Burke-Spolaor, J. Khoo, Y. Levin, S. Osłowski, J. M. Sarkissian, W. van Straten, J. P. W. Verbiest, and J. B. Wang, Science 342, 334 (2013).

    Article  ADS  Google Scholar 

  7. J. T. Xie, J. B. Wang, N. Wang, and Y. Hu, Res. Astron. Astrophys. 22, 075009 (2022).

    Article  ADS  Google Scholar 

  8. D. R. Lorimer, Living Rev. Relativ. 11, 5 (2008).

    Article  ADS  Google Scholar 

  9. N. J. Evans, Annu. Rev. Astron. Astrophys. 37, 311 (1999).

    Article  ADS  Google Scholar 

  10. E. Herbst, and E. F. van Dishoeck, Annu. Rev. Astron. Astrophys. 47, 427 (2009).

    Article  ADS  Google Scholar 

  11. J. Vink, Astron. Astrophys. Rev. 20, 49 (2012).

    Article  ADS  Google Scholar 

  12. R. G. Bower, S. L. Morris, R. Bacon, R. J. Wilman, M. Sullivan, S. Chapman, R. L. Davies, P. T. de Zeeuw, and E. Emsellem, Mon. Not. R. Astron. Soc. 351, 63 (2004).

    Article  ADS  Google Scholar 

  13. R. Blandford, D. Meier, and A. Readhead, Annu. Rev. Astron. Astrophys. 57, 467 (2019).

    Article  ADS  Google Scholar 

  14. L. V. E. Koopmans, Mon. Not. R. Astron. Soc. 363, 1136 (2005).

    Article  ADS  Google Scholar 

  15. F. Stoehr, S. D. M. White, V. Springel, G. Tormen, and N. Yoshida, Mon. Not. R. Astron. Soc. 345, 1313 (2003).

    Article  ADS  Google Scholar 

  16. G. Bertone, N. Bozorgnia, J. S. Kim, S. Liem, C. McCabe, S. Otten, and R. R. de Austri, J. Cosmol. Astropart. Phys. 2018(3), 026 (2018).

    Article  Google Scholar 

  17. P. Charlot, C. S. Jacobs, D. Gordon, S. Lambert, A. de Witt, J. Böhm, A. L. Fey, R. Heinkelmann, E. Skurikhina, O. Titov, E. F. Arias, S. Bolotin, G. Bourda, C. Ma, Z. Malkin, A. Nothnagel, D. Mayer, D. S. MacMillan, T. Nilsson, and R. Gaume, Astron. Astrophys. 644, A159 (2020).

    Article  Google Scholar 

  18. M. S. Li, R. Li, N. Wang, and X. W. Zheng, Res. Astron. Astrophys. 20, 200 (2020).

    Article  ADS  Google Scholar 

  19. P. Ries, Winds and Their Effect on the GBT, Green Bank Telescope (GBT) Precision Telescope Control System (PTCS) Memo 68, (National Radio Astronomy Observatory, Charlottesville, 2010).

    Google Scholar 

  20. S. Kendrew, L. Jolissaint, B. Brandl, R. Lenzen, E. Pantin, A. Glasse, J. Blommaert, L. Venema, R. Siebenmorgen, and F. Molster, SPIE, 7735, 201 (2010).

    ADS  Google Scholar 

  21. R. Wielebinski, N. Junkes, and B. H. Grahl, J. Astron. Hist. Herit. 14, 3 (2011).

    Article  ADS  Google Scholar 

  22. M. Süss, D. Koch, and H. Paluszek, in Proceedings of the SPIE International Symposium on Astronomical Telescopes + Instrumentation, Amsterdam, 1–6 July 2012, edited by L. M. Stepp, R. Gilmozzi, and H. J. Hall (SPIE, New York, 2012), pp. 84442G1–84442G16.

    Google Scholar 

  23. K. Igor, A. Yuryb, and T. Aleksandr, in Fifth International Symposium on Instrumentation Science and Technology, edited by J. Tan, and X. Wen (SPIE, New York, 2008), p. 71333R–1.

    Google Scholar 

  24. R. Li, X. Qin, I. Konyakhin, M. H. Tong, A. Usik, Y. Lu, K. Di, and Y. Liu, IEEE Access 8, 51821 (2020).

    Article  Google Scholar 

  25. E. White, F. D. Ghigo, R. M. Prestage, D. T. Frayer, R. J. Maddalena, P. T. Wallace, J. J. Brandt, D. Egan, J. D. Nelson, and J. Ray, Astron. Astrophys. 659, A113 (2022).

    Article  ADS  Google Scholar 

  26. G. Kazezkhan, B. Xiang, N. Wang, and A. Yusup, Adv. Mech. Eng. 12, 1 (2020).

    Article  Google Scholar 

  27. W. Gawronski, IEEE Trans. Contr. Syst. Technol. 15, 276 (2007).

    Article  Google Scholar 

  28. T. Ranka, M. Garcia-Sanz, A. Symmes, J. M. Ford, and T. Weadon, J. Astron. Telesc. Instrum. Syst. 2, 014001 (2016).

    Article  ADS  Google Scholar 

  29. J. Han, IEEE Trans. Ind. Electron. 56, 900 (2009).

    Article  Google Scholar 

  30. G.-Q. Huang, C. Wen, J.-Y. Lu, and W.-Z. Su, Radio Eng. 52, 864 (2022).

    Google Scholar 

  31. M. Garciasanz, Robust Control Engineering: Practical QFT Solutions (CRC Press, Boca Raton, 2017), pp. 365–394.

    Google Scholar 

  32. M. Morgan, and J. Fisher, arXiv: 0908.3849.

  33. A. Dunning, M. Bowen, M. Bourne, D. Hayman, and S. L. Smith, in Proceeding of 2015 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC) (IEEE, Turin, 2015), pp. 787–790.

    Google Scholar 

  34. J. Tuthill, T. Bateman, G. Hampson, J. D. Bunton, A. J. Brown, D. George, and M. Baquiran, in Proceeding of PAF2016 Phased Array Feed Workshop (Italian National Institute for Astrophysics, Cagliari, 2016).

    Google Scholar 

  35. J. Kocz, L. J. Greenhill, B. R. Barsdell, G. Bernardi, A. Jameson, M. A. Clark, J. Craig, D. Price, G. B. Taylor, F. Schinzel, and D. Werthimer, J. Astron. Instrum. 03, 1450002 (2014).

    Article  Google Scholar 

  36. X. Pei, N. Wang, D. Werthimer, X. F. Duan, J. Li, T. Ergesh, Q. Liu, and M. H. Cai, Res. Astron. Astrophys. 22, 045016 (2022).

    Article  ADS  Google Scholar 

  37. X. Pei, J. Li, N. Wang, T. Ergesh, X. F. Duan, J. Ma, and M. Z. Chen, Res. Astron. Astrophys. 21, 248 (2021).

    Article  ADS  Google Scholar 

  38. J. M. Ford, in GBT Telescope and Instrumentation Control System Hardware Architecture: Computers, Networks, Interfaces, and Timing, editor by H. Lewis (SPIE, New York, 1998), pp. 387–395.

    Google Scholar 

  39. Z. Y. Liu, J. Li, N. Wang, Y. Yuan, and M. Z. Chen, Sci. Sin.-Phys. Mech. Astron. 49, 099509 (2019).

    Article  Google Scholar 

  40. Q. Liu, N. Wang, Y. Liu, and M. Z. Chen, Sci. Sin.-Phys. Mech. Astron. 49, 099511 (2019).

    Article  Google Scholar 

  41. Q. Liu, Y. Liu, M.-Z. Chen, X.-M. Su, F. Liu, N. Wang, Y. Zhang, M. Zhang, and S.-P. Zhang, in 2019 RFI Workshop-Coexisting with Radio Frequency Interference (RFI) (Toulouse, RFI, 2019), pp.1–4.

    Book  Google Scholar 

  42. A. Wootten, and A. R. Thompson, Proc. IEEE 97, 1463 (2009).

    Article  ADS  Google Scholar 

  43. M. Cruces, D. J. Champion, D. Li, M. Kramer, W. W. Zhu, P. Wang, A. D. Cameron, Y. T. Chen, G. Hobbs, P. C. C. Freire, E. Graikou, M. Krco, Z. J. Liu, C. C. Miao, J. Niu, Z. C. Pan, L. Qian, M. Y. Xue, X. Y. Xie, S. P. You, X. H. Yu, M. Yuan, Y. L. Yue, Y. Zhu, K. Lackeos, N. Porayko, J. Wongphecauxon, and R. Main, Mon. Not. R. Astron. Soc. 508, 300 (2021).

    Article  ADS  Google Scholar 

  44. J.-L. Han, C. Wang, P.-F. Wang, T. Wang, D.-J. Zhou, J.-H. Sun, Y. Yan, W.-Q. Su, W.-C. Jing, X. Chen, X.-Y. Gao, L.-G. Hou, J. Xu, K.-J. Lee, N. Wang, P. Jiang, R.-X. Xu, J. Yan, H.-Q. Gan, X. Guan, W.-J. Huang, J.-C. Jiang, H. Li, Y.-P. Men, C. Sun, B.-J. Wang, H.-G. Wang, S.-Q. Wang, J.-T. Xie, H. Xu, R. Yao, X.-P. You, D.-J. Yu, J.-P. Yuan, R. Yuen, R. C.-F. Zhang, and Y. Zhu, Res. Astron. Astrophys. 21, 107 (2021).

    Article  ADS  Google Scholar 

  45. X. H. Cui, C. M. Zhang, S. Q. Wang, J. W. Zhang, D. Li, B. Peng, W. W. Zhu, N. Wang, R. Strom, C. Q. Ye, D. H. Wang, and Y. Y. Yang, Mon. Not. R. Astron. Soc. 500, 3275 (2021).

    Article  ADS  Google Scholar 

  46. G. Hobbs, S. Dai, R. N. Manchester, R. M. Shannon, M. Kerrl, K.-J. Lee, and R.-X. Xu, Res. Astron. Astrophys. 19, 37 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Wang.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2021YFC2203501, 2021YFC2203502, 2021YFC2203503, and 2021YFC2203600), the National Natural Science Foundation of China (Grant Nos. 12173077, 11873082, 11803080, and 12003062), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. PTYQ2022YZZD01), the Operation, Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments, budgeted from the Ministry of Finance of China and Administrated by the Chinese Academy of Sciences, and the Chinese Academy of Sciences “Light of West China” Program (Grant No. 2021-XBQNXZ-030).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Xu, Q., Ma, J. et al. The Qitai radio telescope. Sci. China Phys. Mech. Astron. 66, 289512 (2023). https://doi.org/10.1007/s11433-023-2131-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2131-1

Navigation