Abstract
In this study, we present first-principles investigations of the atomic structure of Al1−xScxN and its influence on its piezoelectric and ferroelectric properties. The unbiased structure searching revealed that Al1−xScxN with phase separation feature, where AlN and ScN form a layered structure with different symmetries, is more stable than the corresponding wurtzite structure. The piezoelectric response of Al1−xScxN is strongly dependent on the atomic arrangements; in particular, Al0.5Sc0.5N with a wurtzite structure exhibits a large positive e33 of 4.79 C/m2, whereas Al0.5Sc0.5N with a phase separation structure exhibits a negative e33 of −0.67 C/m2. Moreover, the ferroelectric switching of Al1−xScxN demonstrated two distinct pathways for the wurtzite and phase separation structures, and the spontaneous polarization thus calculated exhibits entirely different values. Accordingly, we demonstrated that Al0.25Sc0.75N with a phase separation structure exhibits a low polarization switching barrier of 0.15 eV/f.u. and a large spontaneous polarization of −0.77 C/m2; thus, it can serve as a novel Al1−xScxN-based ferroelectric material. As the dipoles in Al1−xScxN with a phase separation structure are localized in the AlN region, they are individually switchable at no domain wall energy cost and are stable against extrinsic effects.
Similar content being viewed by others
References
O. Ambacher, J. Phys. D-Appl. Phys. 31, 2653 (1998).
F. A. Ponce, and D. P. Bour, Nature 386, 351 (1997).
D. Li, K. Jiang, X. Sun, and C. Guo, Adv. Opt. Photon. 10, 43 (2018).
Q. Cai, H. You, H. Guo, J. Wang, B. Liu, Z. Xie, D. Chen, H. Lu, Y. Zheng, and R. Zhang, Light Sci. Appl. 10, 94 (2021).
O. Ambacher, R. Dimitrov, M. Stutzmann, B. E. Foutz, M. J. Murphy, J. A. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Chumbes, B. Green, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman, Phys. Stat. Sol. (B) 216, 381 (1999).
G. Piazza, V. Felmetsger, P. Muralt, R. H. Olsson III, and R. Ruby, MRS Bull. 37, 1051 (2012).
C. Fei, X. Liu, B. Zhu, D. Li, X. Yang, Y. Yang, and Q. Zhou, Nano Energy 51, 146 (2018).
M. A. Dubois, and P. Muralt, Appl. Phys. Lett. 74, 3032 (1999).
A. I. Khan, A. Keshavarzi, and S. Datta, Nat. Electron. 3, 588 (2020).
M. Akiyama, T. Kamohara, K. Kano, A. Teshigahara, Y. Takeuchi, and N. Kawahara, Adv. Mater. 21, 593 (2009).
M. Akiyama, K. Umeda, A. Honda, and T. Nagase, Appl. Phys. Lett. 102, 021915 (2013).
S. Fichtner, N. Wolff, F. Lofink, L. Kienle, and B. Wagner, J. Appl. Phys. 125, 114103 (2019).
S. Yasuoka, T. Shimizu, A. Tateyama, M. Uehara, H. Yamada, M. Akiyama, Y. Hiranaga, Y. Cho, and H. Funakubo, J. Appl. Phys. 128, 114103 (2020).
P. Wang, D. Wang, N. M. Vu, T. Chiang, J. T. Heron, and Z. Mi, Appl. Phys. Lett. 118, 223504 (2021).
S. L. Tsai, T. Hoshii, H. Wakabayashi, K. Tsutsui, T. K. Chung, E. Y. Chang, and K. Kakushima, Appl. Phys. Lett. 118, 082902 (2021).
M. Dawber, K. M. Rabe, and J. F. Scott, Rev. Mod. Phys. 77, 1083 (2005).
J. F. Scott, Science 315, 954 (2007).
S. Salahuddin, and S. Datta, Nano Lett. 8, 405 (2008).
R. Khosla, and S. K. Sharma, ACS Appl. Electron. Mater. 3, 2862 (2021).
P. Muralt, R. G. Polcawich, and S. Trolier-McKinstry, MRS Bull. 34, 658 (2009).
N. Farrer, and L. Bellaiche, Phys. Rev. B 66, 201203 (2002).
V. Ranjan, L. Bellaiche, and E. J. Walter, Phys. Rev. Lett. 90, 257602 (2003).
B. Biswas, and B. Saha, Phys. Rev. Mater. 3, 020301 (2019).
F. Tasnádi, B. Alling, C. Höglund, G. Wingqvist, J. Birch, L. Hultman, and I. A. Abrikosov, Phys. Rev. Lett. 104, 137601 (2010).
S. Zhang, D. Holec, W. Y. Fu, C. J. Humphreys, and M. A. Moram, J. Appl. Phys. 114, 133510 (2013).
K. R. Talley, S. L. Millican, J. Mangum, S. Siol, C. B. Musgrave, B. Gorman, A. M. Holder, A. Zakutayev, and G. L. Brennecka, Phys. Rev. Mater. 2, 063802 (2018).
H. Wang, N. Adamski, S. Mu, and C. G. Van de Walle, J. Appl. Phys. 130, 104101 (2021).
Z. Jiang, C. Paillard, D. Vanderbilt, H. Xiang, and L. Bellaiche, Phys. Rev. Lett. 123, 096801 (2019).
M. Noor-A-Alam, O. Z. Olszewski, and M. Nolan, ACS Appl. Mater. Interfaces 11, 20482 (2019).
Z. Jiang, B. Xu, H. Xiang, and L. Bellaiche, Phys. Rev. Mater. 5, L072401 (2021).
K. H. Ye, G. Han, I. W. Yeu, C. S. Hwang, and J. H. Choi, Phys. Rapid Res. Ltrs. 15, 2100009 (2021).
C. Höglund, J. Birch, B. Alling, J. Bareño, Z. Czigány, P. O. Å. Persson, G. Wingqvist, A. Zukauskaite, and L. Hultman, J. Appl. Phys. 107, 123515 (2010).
N. Wolff, S. Fichtner, B. Haas, M. R. Islam, F. Niekiel, M. Kessel, O. Ambacher, C. Koch, B. Wagner, F. Lofink, and L. Kienle, J. Appl. Phys. 129, 034103 (2021).
B. Saha, S. Saber, E. A. Stach, E. P. Kvam, and T. D. Sands, Appl. Phys. Lett. 109, 172102 (2016).
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
G. Kresse, and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
G. Kresse, and D. Joubert, Phys. Rev. B 59, 1758 (1999).
Y. Wang, J. Lv, L. Zhu, and Y. Ma, Phys. Rev. B 82, 094116 (2010).
Y. Wang, J. Lv, L. Zhu, and Y. Ma, Comput. Phys. Commun. 183, 2063 (2012).
Q. Li, J. Wang, M. Zhang, Q. Li, and Y. Ma, RSC Adv. 5, 35882 (2015).
R. Wang, Y. Sun, F. Zhang, F. Zheng, Y. Fang, S. Wu, H. Dong, C. Z. Wang, V. Antropov, and K. M. Ho, Inorg. Chem. 61, 18154 (2022).
A. Togo, and I. Tanaka, Script. Mater. 108, 1 (2015).
X. Wu, D. Vanderbilt, and D. R. Hamann, Phys. Rev. B 72, 035105 (2005).
A. Erba, Phys. Chem. Chem. Phys. 18, 13984 (2016).
G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).
R. D. King-Smith, and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).
R. Resta, Rev. Mod. Phys. 66, 899 (1994).
S. Liu, and R. E. Cohen, Phys. Rev. Lett. 119, 207601 (2017).
T. Furukawa, J. X. Wen, K. Suzuki, Y. Takashina, and M. Date, J. Appl. Phys. 56, 829 (1984).
I. Katsouras, K. Asadi, M. Li, T. B. van Driel, K. S. Kjær, D. Zhao, T. Lenz, Y. Gu, P. W. M. Blom, D. Damjanovic, M. M. Nielsen, and D. M. de Leeuw, Nat. Mater. 15, 78 (2016).
L. You, Y. Zhang, S. Zhou, A. Chaturvedi, S. A. Morris, F. Liu, L. Chang, D. Ichinose, H. Funakubo, W. Hu, T. Wu, Z. Liu, S. Dong, and J. Wang, Sci. Adv. 5, 1 (2019).
J. Liu, S. Liu, J. Y. Yang, and L. Liu, Phys. Rev. Lett. 125, 197601 (2020).
S. Dutta, P. Buragohain, S. Glinsek, C. Richter, H. Aramberri, H. Lu, U. Schroeder, E. Defay, A. Gruverman, and J. Íñiguez, Nat. Commun. 12, 7301 (2021).
J. W. Bennett, K. F. Garrity, K. M. Rabe, and D. Vanderbilt, Phys. Rev. Lett. 109, 167602 (2012).
M. Noor-A-Alam, O. Z. Olszewski, and M. Nolan, ACS Appl. Mater. Interfaces 11, 20482 (2019).
J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, Phys. Rev. B 71, 014113 (2005).
C. E. Dreyer, A. Janotti, C. G. Van de Walle, and D. Vanderbilt, Phys. Rev. X 6, 021038 (2016).
M. Vopsaroiu, J. Blackburn, M. G. Cain, and P. M. Weaver, Phys. Rev. B 82, 024109 (2010).
H. J. Lee, M. Lee, K. Lee, J. Jo, H. Yang, Y. Kim, S. C. Chae, U. Waghmare, and J. H. Lee, Science 369, 1343 (2020).
Author information
Authors and Affiliations
Corresponding authors
Additional information
This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFA0715600), the National Natural Science Foundation of China (Grant Nos. 12004378, 62121005, 12234018, 61874118, and 61827813), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. ZDBS-LY-JSC026).
Supporting Information
The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.
Supplementary Information
Rights and permissions
About this article
Cite this article
Zang, H., Shi, Z., Liu, M. et al. Tunable piezoelectric and ferroelectric responses of Al1−xScxN: The role of atomic arrangement. Sci. China Phys. Mech. Astron. 66, 277711 (2023). https://doi.org/10.1007/s11433-023-2102-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11433-023-2102-8