Skip to main content
Log in

Tunable piezoelectric and ferroelectric responses of Al1−xScxN: The role of atomic arrangement

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this study, we present first-principles investigations of the atomic structure of Al1−xScxN and its influence on its piezoelectric and ferroelectric properties. The unbiased structure searching revealed that Al1−xScxN with phase separation feature, where AlN and ScN form a layered structure with different symmetries, is more stable than the corresponding wurtzite structure. The piezoelectric response of Al1−xScxN is strongly dependent on the atomic arrangements; in particular, Al0.5Sc0.5N with a wurtzite structure exhibits a large positive e33 of 4.79 C/m2, whereas Al0.5Sc0.5N with a phase separation structure exhibits a negative e33 of −0.67 C/m2. Moreover, the ferroelectric switching of Al1−xScxN demonstrated two distinct pathways for the wurtzite and phase separation structures, and the spontaneous polarization thus calculated exhibits entirely different values. Accordingly, we demonstrated that Al0.25Sc0.75N with a phase separation structure exhibits a low polarization switching barrier of 0.15 eV/f.u. and a large spontaneous polarization of −0.77 C/m2; thus, it can serve as a novel Al1−xScxN-based ferroelectric material. As the dipoles in Al1−xScxN with a phase separation structure are localized in the AlN region, they are individually switchable at no domain wall energy cost and are stable against extrinsic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Ambacher, J. Phys. D-Appl. Phys. 31, 2653 (1998).

    Article  ADS  Google Scholar 

  2. F. A. Ponce, and D. P. Bour, Nature 386, 351 (1997).

    Article  ADS  Google Scholar 

  3. D. Li, K. Jiang, X. Sun, and C. Guo, Adv. Opt. Photon. 10, 43 (2018).

    Article  Google Scholar 

  4. Q. Cai, H. You, H. Guo, J. Wang, B. Liu, Z. Xie, D. Chen, H. Lu, Y. Zheng, and R. Zhang, Light Sci. Appl. 10, 94 (2021).

    Article  ADS  Google Scholar 

  5. O. Ambacher, R. Dimitrov, M. Stutzmann, B. E. Foutz, M. J. Murphy, J. A. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Chumbes, B. Green, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman, Phys. Stat. Sol. (B) 216, 381 (1999).

    Article  ADS  Google Scholar 

  6. G. Piazza, V. Felmetsger, P. Muralt, R. H. Olsson III, and R. Ruby, MRS Bull. 37, 1051 (2012).

    Article  Google Scholar 

  7. C. Fei, X. Liu, B. Zhu, D. Li, X. Yang, Y. Yang, and Q. Zhou, Nano Energy 51, 146 (2018).

    Article  Google Scholar 

  8. M. A. Dubois, and P. Muralt, Appl. Phys. Lett. 74, 3032 (1999).

    Article  ADS  Google Scholar 

  9. A. I. Khan, A. Keshavarzi, and S. Datta, Nat. Electron. 3, 588 (2020).

    Article  Google Scholar 

  10. M. Akiyama, T. Kamohara, K. Kano, A. Teshigahara, Y. Takeuchi, and N. Kawahara, Adv. Mater. 21, 593 (2009).

    Article  Google Scholar 

  11. M. Akiyama, K. Umeda, A. Honda, and T. Nagase, Appl. Phys. Lett. 102, 021915 (2013).

    Article  ADS  Google Scholar 

  12. S. Fichtner, N. Wolff, F. Lofink, L. Kienle, and B. Wagner, J. Appl. Phys. 125, 114103 (2019).

    Article  ADS  Google Scholar 

  13. S. Yasuoka, T. Shimizu, A. Tateyama, M. Uehara, H. Yamada, M. Akiyama, Y. Hiranaga, Y. Cho, and H. Funakubo, J. Appl. Phys. 128, 114103 (2020).

    Article  ADS  Google Scholar 

  14. P. Wang, D. Wang, N. M. Vu, T. Chiang, J. T. Heron, and Z. Mi, Appl. Phys. Lett. 118, 223504 (2021).

    Article  ADS  Google Scholar 

  15. S. L. Tsai, T. Hoshii, H. Wakabayashi, K. Tsutsui, T. K. Chung, E. Y. Chang, and K. Kakushima, Appl. Phys. Lett. 118, 082902 (2021).

    Article  ADS  Google Scholar 

  16. M. Dawber, K. M. Rabe, and J. F. Scott, Rev. Mod. Phys. 77, 1083 (2005).

    Article  ADS  Google Scholar 

  17. J. F. Scott, Science 315, 954 (2007).

    Article  ADS  Google Scholar 

  18. S. Salahuddin, and S. Datta, Nano Lett. 8, 405 (2008).

    Article  ADS  Google Scholar 

  19. R. Khosla, and S. K. Sharma, ACS Appl. Electron. Mater. 3, 2862 (2021).

    Article  Google Scholar 

  20. P. Muralt, R. G. Polcawich, and S. Trolier-McKinstry, MRS Bull. 34, 658 (2009).

    Article  Google Scholar 

  21. N. Farrer, and L. Bellaiche, Phys. Rev. B 66, 201203 (2002).

    Article  ADS  Google Scholar 

  22. V. Ranjan, L. Bellaiche, and E. J. Walter, Phys. Rev. Lett. 90, 257602 (2003).

    Article  ADS  Google Scholar 

  23. B. Biswas, and B. Saha, Phys. Rev. Mater. 3, 020301 (2019).

    Article  Google Scholar 

  24. F. Tasnádi, B. Alling, C. Höglund, G. Wingqvist, J. Birch, L. Hultman, and I. A. Abrikosov, Phys. Rev. Lett. 104, 137601 (2010).

    Article  ADS  Google Scholar 

  25. S. Zhang, D. Holec, W. Y. Fu, C. J. Humphreys, and M. A. Moram, J. Appl. Phys. 114, 133510 (2013).

    Article  ADS  Google Scholar 

  26. K. R. Talley, S. L. Millican, J. Mangum, S. Siol, C. B. Musgrave, B. Gorman, A. M. Holder, A. Zakutayev, and G. L. Brennecka, Phys. Rev. Mater. 2, 063802 (2018).

    Article  Google Scholar 

  27. H. Wang, N. Adamski, S. Mu, and C. G. Van de Walle, J. Appl. Phys. 130, 104101 (2021).

    Article  ADS  Google Scholar 

  28. Z. Jiang, C. Paillard, D. Vanderbilt, H. Xiang, and L. Bellaiche, Phys. Rev. Lett. 123, 096801 (2019).

    Article  ADS  Google Scholar 

  29. M. Noor-A-Alam, O. Z. Olszewski, and M. Nolan, ACS Appl. Mater. Interfaces 11, 20482 (2019).

    Article  Google Scholar 

  30. Z. Jiang, B. Xu, H. Xiang, and L. Bellaiche, Phys. Rev. Mater. 5, L072401 (2021).

    Article  ADS  Google Scholar 

  31. K. H. Ye, G. Han, I. W. Yeu, C. S. Hwang, and J. H. Choi, Phys. Rapid Res. Ltrs. 15, 2100009 (2021).

    Article  Google Scholar 

  32. C. Höglund, J. Birch, B. Alling, J. Bareño, Z. Czigány, P. O. Å. Persson, G. Wingqvist, A. Zukauskaite, and L. Hultman, J. Appl. Phys. 107, 123515 (2010).

    Article  ADS  Google Scholar 

  33. N. Wolff, S. Fichtner, B. Haas, M. R. Islam, F. Niekiel, M. Kessel, O. Ambacher, C. Koch, B. Wagner, F. Lofink, and L. Kienle, J. Appl. Phys. 129, 034103 (2021).

    Article  ADS  Google Scholar 

  34. B. Saha, S. Saber, E. A. Stach, E. P. Kvam, and T. D. Sands, Appl. Phys. Lett. 109, 172102 (2016).

    Article  ADS  Google Scholar 

  35. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  36. G. Kresse, and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  37. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  38. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  39. G. Kresse, and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  40. Y. Wang, J. Lv, L. Zhu, and Y. Ma, Phys. Rev. B 82, 094116 (2010).

    Article  ADS  Google Scholar 

  41. Y. Wang, J. Lv, L. Zhu, and Y. Ma, Comput. Phys. Commun. 183, 2063 (2012).

    Article  ADS  Google Scholar 

  42. Q. Li, J. Wang, M. Zhang, Q. Li, and Y. Ma, RSC Adv. 5, 35882 (2015).

    Article  ADS  Google Scholar 

  43. R. Wang, Y. Sun, F. Zhang, F. Zheng, Y. Fang, S. Wu, H. Dong, C. Z. Wang, V. Antropov, and K. M. Ho, Inorg. Chem. 61, 18154 (2022).

    Article  Google Scholar 

  44. A. Togo, and I. Tanaka, Script. Mater. 108, 1 (2015).

    Article  Google Scholar 

  45. X. Wu, D. Vanderbilt, and D. R. Hamann, Phys. Rev. B 72, 035105 (2005).

    Article  ADS  Google Scholar 

  46. A. Erba, Phys. Chem. Chem. Phys. 18, 13984 (2016).

    Article  Google Scholar 

  47. G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).

    Article  ADS  Google Scholar 

  48. R. D. King-Smith, and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).

    Article  ADS  Google Scholar 

  49. R. Resta, Rev. Mod. Phys. 66, 899 (1994).

    Article  ADS  Google Scholar 

  50. S. Liu, and R. E. Cohen, Phys. Rev. Lett. 119, 207601 (2017).

    Article  ADS  Google Scholar 

  51. T. Furukawa, J. X. Wen, K. Suzuki, Y. Takashina, and M. Date, J. Appl. Phys. 56, 829 (1984).

    Article  ADS  Google Scholar 

  52. I. Katsouras, K. Asadi, M. Li, T. B. van Driel, K. S. Kjær, D. Zhao, T. Lenz, Y. Gu, P. W. M. Blom, D. Damjanovic, M. M. Nielsen, and D. M. de Leeuw, Nat. Mater. 15, 78 (2016).

    Article  ADS  Google Scholar 

  53. L. You, Y. Zhang, S. Zhou, A. Chaturvedi, S. A. Morris, F. Liu, L. Chang, D. Ichinose, H. Funakubo, W. Hu, T. Wu, Z. Liu, S. Dong, and J. Wang, Sci. Adv. 5, 1 (2019).

    Article  Google Scholar 

  54. J. Liu, S. Liu, J. Y. Yang, and L. Liu, Phys. Rev. Lett. 125, 197601 (2020).

    Article  ADS  Google Scholar 

  55. S. Dutta, P. Buragohain, S. Glinsek, C. Richter, H. Aramberri, H. Lu, U. Schroeder, E. Defay, A. Gruverman, and J. Íñiguez, Nat. Commun. 12, 7301 (2021).

    Article  ADS  Google Scholar 

  56. J. W. Bennett, K. F. Garrity, K. M. Rabe, and D. Vanderbilt, Phys. Rev. Lett. 109, 167602 (2012).

    Article  ADS  Google Scholar 

  57. M. Noor-A-Alam, O. Z. Olszewski, and M. Nolan, ACS Appl. Mater. Interfaces 11, 20482 (2019).

    Article  Google Scholar 

  58. J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, Phys. Rev. B 71, 014113 (2005).

    Article  ADS  Google Scholar 

  59. C. E. Dreyer, A. Janotti, C. G. Van de Walle, and D. Vanderbilt, Phys. Rev. X 6, 021038 (2016).

    Google Scholar 

  60. M. Vopsaroiu, J. Blackburn, M. G. Cain, and P. M. Weaver, Phys. Rev. B 82, 024109 (2010).

    Article  ADS  Google Scholar 

  61. H. J. Lee, M. Lee, K. Lee, J. Jo, H. Yang, Y. Kim, S. C. Chae, U. Waghmare, and J. H. Lee, Science 369, 1343 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojuan Sun or Dabing Li.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFA0715600), the National Natural Science Foundation of China (Grant Nos. 12004378, 62121005, 12234018, 61874118, and 61827813), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. ZDBS-LY-JSC026).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, H., Shi, Z., Liu, M. et al. Tunable piezoelectric and ferroelectric responses of Al1−xScxN: The role of atomic arrangement. Sci. China Phys. Mech. Astron. 66, 277711 (2023). https://doi.org/10.1007/s11433-023-2102-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2102-8

Keywords

Navigation