Skip to main content
Log in

Charge density wave order and electron-boson coupling in ternary superconductor Bi2Rh3Se2

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The newly discovered ternary chalcogenide superconductor Bi2Rh3Se2 has attracted growing attention, which provides an opportunity to explore the interplay between charge density wave (CDW) order and superconductivity. However, whether the phase transition around 240 K can be attributed to the formation of CDW remains controversial. To help resolve the debate, we study the electronic structure of Bi2Rh3Se2 by angle-resolved photoemission spectroscopy, focusing on the nature of its high-temperature phase transition around 240 K. Our measurements demonstrate that the phase transition at 240 K is a second-order CDW phase transition. Our results reveal (i) a 2 × 2 CDW order in Bi2Rh3Se2, accompanied by the reconstruction of electronic structure, such as band folding, band splitting, and opening of CDW gaps at and away from the Fermi level; (ii) the existence of electron-boson coupling, which is manifested as an apparent kink and peak-dip-hump structure in dispersion. Our observations thus enable us to shed light on the nature of CDW order and superconductivity in Bi2Rh3Se2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  2. R. E. Peierls, Quantum Theory of Solids (Clarendon, Oxford, 1955).

    MATH  Google Scholar 

  3. S. K. Chan, and V. Heine, J. Phys. F-Met. Phys. 3, 795 (1973).

    Article  ADS  Google Scholar 

  4. A. Damascelli, Z. Hussain, and Z. X. Shen, Rev. Mod. Phys. 75, 473 (2003), arXiv: cond-mat/0208504.

    Article  ADS  Google Scholar 

  5. Q. Si, R. Yu, and E. Abrahams, Nat. Rev. Mater. 1, 16017 (2016), arXiv: 1604.03566.

    Article  ADS  Google Scholar 

  6. J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, J. Larsen, J. Mesot, R. Liang, D. A. Bonn, W. N. Hardy, A. Watenphul, M. V. Zimmermann, E. M. Forgan, and S. M. Hayden, Nat. Phys. 8, 871 (2012), arXiv: 1206.4333.

    Article  Google Scholar 

  7. J. Q. Meng, M. Brunner, K. H. Kim, H. G. Lee, S. I. Lee, J. S. Wen, Z. J. Xu, G. D. Gu, and G. H. Gweon, Phys. Rev. B 84, 060513 (2011), arXiv: 1010.5459.

    Article  ADS  Google Scholar 

  8. G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa, C. Mazzoli, N. B. Brookes, G. M. De Luca, A. Frano, D. G. Hawthorn, F. He, T. Loew, M. M. Sala, D. C. Peets, M. Salluzzo, E. Schierle, R. Sutarto, G. A. Sawatzky, E. Weschke, B. Keimer, and L. Braicovich, Science 337, 821 (2012), arXiv: 1207.0915.

    Article  ADS  Google Scholar 

  9. S. Gerber, H. Jang, H. Nojiri, S. Matsuzawa, H. Yasumura, D. A. Bonn, R. Liang, W. N. Hardy, Z. Islam, A. Mehta, S. Song, M. Sikorski, D. Stefanescu, Y. Feng, S. A. Kivelson, T. P. Devereaux, Z. X. Shen, C. C. Kao, W. S. Lee, D. Zhu, and J. S. Lee, Science 350, 949 (2015).

    Article  Google Scholar 

  10. L. Chaix, G. Ghiringhelli, Y. Y. Peng, M. Hashimoto, B. Moritz, K. Kummer, N. B. Brookes, Y. He, S. Chen, S. Ishida, Y. Yoshida, H. Eisaki, M. Salluzzo, L. Braicovich, Z. X. Shen, T. P. Devereaux, and W. S. Lee, Nat. Phys. 13, 952 (2017).

    Article  Google Scholar 

  11. I. Vinograd, R. Zhou, M. Hirata, T. Wu, H. Mayaffre, S. Krämer, R. Liang, W. N. Hardy, D. A. Bonn, and M. H. Julien, Nat. Commun. 12, 3274 (2021), arXiv: 2103.13215.

    Article  ADS  Google Scholar 

  12. T. Kiss, T. Yokoya, A. Chainani, S. Shin, T. Hanaguri, M. Nohara, and H. Takagi, Nat. Phys. 3, 720 (2007).

    Article  Google Scholar 

  13. T. Sakamoto, M. Wakeshima, Y. Hinatsu, and K. Matsuhira, Phys. Rev. B 75, 060503 (2007).

    Article  ADS  Google Scholar 

  14. B. R. Ortiz, L. C. Gomes, J. R. Morey, M. Winiarski, M. Bordelon, J. S. Mangum, I. W. H. Oswald, J. A. Rodriguez-Rivera, J. R. Neilson, S. D. Wilson, E. Ertekin, T. M. McQueen, and E. S. Toberer, Phys. Rev. Mater. 3, 094407 (2019).

    Article  Google Scholar 

  15. W. Duan, Z. Nie, S. Luo, F. Yu, B. R. Ortiz, L. Yin, H. Su, F. Du, A. Wang, Y. Chen, X. Lu, J. Ying, S. D. Wilson, X. Chen, Y. Song, and H. Yuan, Sci. China-Phys. Mech. Astron. 64, 107462 (2021), arXiv: 2103.11796.

    Article  ADS  Google Scholar 

  16. K. Jiang, Sci. China-Phys. Mech. Astron. 65, 247463 (2022).

    Article  ADS  Google Scholar 

  17. C. Y. Chen, C. L. Chan, S. Mukherjee, C. C. Chou, C. M. Tseng, S. L. Hsu, M. W. Chu, J. Y. Lin, and H. D. Yang, Solid State Commun. 177, 42 (2014).

    Article  ADS  Google Scholar 

  18. T. Sakamoto, M. Wakeshima, Y. Hinatsu, and K. Matsuhira, Phys. Rev. B 78, 024509 (2008).

    Article  ADS  Google Scholar 

  19. T. Sakamoto, M. Wakeshima, and Y. Hinatsu, J. Phys.-Condens. Matter 18, 4417 (2006).

    Article  ADS  Google Scholar 

  20. U. S. Kaluarachchi, W. Xie, Q. Lin, V. Taufour, S. L. Bud’ko, G. J. Miller, and P. C. Canfield, Phys. Rev. B 91, 174513 (2015), arXiv: 1504.00685.

    Article  ADS  Google Scholar 

  21. T. Lin, L. Y. Shi, Z. X. Wang, S. J. Zhang, Q. M. Liu, T. C. Hu, T. Dong, D. Wu, and N. L. Wang, Phys. Rev. B 101, 205112 (2020), arXiv: 2004.10648.

    Article  ADS  Google Scholar 

  22. Z. G. Chen, G. Xu, W. Z. Hu, X. D. Zhang, P. Zheng, G. F. Chen, J. L. Luo, Z. Fang, and N. L. Wang, Phys. Rev. B 80, 094506 (2009).

    Article  ADS  Google Scholar 

  23. K. Qian, L. Gao, X. Chen, H. Li, S. Zhang, X. L. Zhang, S. Zhu, J. Yan, D. Bao, L. Cao, J. A. Shi, J. Lu, C. Liu, J. Wang, T. Qian, H. Ding, L. Gu, W. Zhou, Y. Y. Zhang, X. Lin, S. Du, M. Ouyang, S. T. Pantelides, and H. J. Gao, Adv. Mater. 32, 1908314 (2020).

    Article  Google Scholar 

  24. C. W. Nicholson, M. Rumo, A. Pulkkinen, G. Kremer, B. Salzmann, M. L. Mottas, B. Hildebrand, T. Jaouen, T. K. Kim, S. Mukherjee, K. Y. Ma, M. Muntwiler, F. O. von Rohr, C. Cacho, and C. Monney, Commun. Mater. 2, 25 (2021), arXiv: 2101.03990.

    Article  Google Scholar 

  25. D. Ootsuki, S. Pyon, K. Kudo, M. Nohara, M. Horio, T. Yoshida, A. Fujimori, M. Arita, H. Anzai, H. Namatame, M. Taniguchi, N. L. Saini, and T. Mizokawa, J. Phys. Soc. Jpn. 82, 093704 (2013), arXiv: 1207.2613.

    Article  ADS  Google Scholar 

  26. P. Chen, W. W. Pai, Y. H. Chan, A. Takayama, C. Z. Xu, A. Karn, S. Hasegawa, M. Y. Chou, S. K. Mo, A. V. Fedorov, and T. C. Chiang, Nat. Commun. 8, 516 (2017), arXiv: 1805.05275.

    Article  ADS  Google Scholar 

  27. H. Luo, Q. Gao, H. Liu, Y. Gu, D. Wu, C. Yi, J. Jia, S. Wu, X. Luo, Y. Xu, L. Zhao, Q. Wang, H. Mao, G. Liu, Z. Zhu, Y. Shi, K. Jiang, J. Hu, Z. Xu, and X. J. Zhou, Nat. Commun. 13, 273 (2022), arXiv: 2107.02688.

    Article  ADS  Google Scholar 

  28. P. Chen, Y. H. Chan, X. Y. Fang, S. K. Mo, Z. Hussain, A. V. Fedorov, M. Y. Chou, and T. C. Chiang, Sci. Rep. 6, 37910 (2016).

    Article  ADS  Google Scholar 

  29. F. Clerc, C. Battaglia, M. Bovet, L. Despont, C. Monney, H. Cercellier, M. G. Garnier, P. Aebi, H. Berger, and L. Forro, Phys. Rev. B 74, 155114(2006).

    Article  ADS  Google Scholar 

  30. C. Zhang, Q. Y. Wu, Y. H. Yuan, X. Zhang, H. Liu, Z. T. Liu, H. Y. Zhang, J. J. Song, Y. Z. Zhao, F. Y. Wu, S. Y. Liu, B. Chen, X. Q. Ye, S. T. Cui, Z. Sun, X. F. Tang, J. He, H. Y. Liu, Y. X. Duan, Y. F. Guo, and J. Q. Meng, Phys. Rev. B 106, L201108 (2022).

    Article  ADS  Google Scholar 

  31. W. Zhang, G. Liu, L. Zhao, H. Liu, J. Meng, X. Dong, W. Lu, J. S. Wen, Z. J. Xu, G. D. Gu, T. Sasagawa, G. Wang, Y. Zhu, H. Zhang, Y. Zhou, X. Wang, Z. Zhao, C. Chen, Z. Xu, and X. J. Zhou, Phys. Rev. Lett. 100, 107002 (2008), arXiv: 0711.1706.

    Article  ADS  Google Scholar 

  32. Y. Y. Peng, J. Q. Meng, L. Zhao, Y. Liu, J. F. He, G. D. Liu, X. L. Dong, S. L. He, J. Zhang, C. T. Chen, Z. Y. Xu, and X. J. Zhou, Chin. Phys. Lett. 30, 067402 (2013), arXiv: 1305.6194.

    Article  ADS  Google Scholar 

  33. A. Lanzara, P. V. Bogdanov, X. J. Zhou, S. A. Kellar, D. L. Feng, E. D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J. I. Shimoyama, T. Noda, S. Uchida, Z. Hussain, and Z. X. Shen, Nature 412, 510 (2001), arXiv: cond-mat/0102227.

    Article  ADS  Google Scholar 

  34. S. X. Zhu, C. Zhang, Q. Y. Wu, X. F. Tang, H. Liu, Z. T. Liu, Y. Luo, J. J. Song, F. Y. Wu, Y. Z. Zhao, S. Y. Liu, T. Le, X. Lu, H. Ma, K. H. Liu, Y. H. Yuan, H. Huang, J. He, H. Y. Liu, Y. X. Duan, and J. Q. Meng, Phys. Rev. B 103, 115108 (2021), arXiv: 2012.01645.

    Article  ADS  Google Scholar 

  35. X. J. Zhou, J. Shi, T. Yoshida, T. Cuk, W. L. Yang, V. Brouet, J. Nakamura, N. Mannella, S. Komiya, Y. Ando, F. Zhou, W. X. Ti, J. W. Xiong, Z. X. Zhao, T. Sasagawa, T. Kakeshita, H. Eisaki, S. Uchida, A. Fujimori, Z. Zhang, E. W. Plummer, R. B. Laughlin, Z. Hussain, and Z. X. Shen, Phys. Rev. Lett. 95, 117001 (2005), arXiv: cond-mat/0405130.

    Article  ADS  Google Scholar 

  36. X. F. Tang, Y. X. Duan, F. Y. Wu, S. Y. Liu, C. Zhang, Y. Z. Zhao, J. J. Song, Y. Luo, Q. Y. Wu, J. He, H. Y. Liu, W. Xu, and J. Q. Meng, Phys. Rev. B 99, 125112 (2019), arXiv: 1808.10610.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Qiao Meng.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFA1604204), National Natural Science Foundation of China (Grant No. 92265101), Science and Technology Innovation Program of Hunan Province (Grant No. 2022RC3068), and Innovation-driven Plan in Central South University (Grant No. 2016CXS032).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplemental Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, ZT., Zhang, C., Wu, QY. et al. Charge density wave order and electron-boson coupling in ternary superconductor Bi2Rh3Se2. Sci. China Phys. Mech. Astron. 66, 277411 (2023). https://doi.org/10.1007/s11433-022-2089-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-2089-9

Navigation